928 research outputs found

    The Structure of a Low-Metallicity Giant Molecular Cloud Complex

    Full text link
    To understand the impact of low metallicities on giant molecular cloud (GMC) structure, we compare far infrared dust emission, CO emission, and dynamics in the star-forming complex N83 in the Wing of the Small Magellanic Cloud. Dust emission (measured by Spitzer as part of the S3MC and SAGE-SMC surveys) probes the total gas column independent of molecular line emission and traces shielding from photodissociating radiation. We calibrate a method to estimate the dust column using only the high-resolution Spitzer data and verify that dust traces the ISM in the HI-dominated region around N83. This allows us to resolve the relative structures of H2, dust, and CO within a giant molecular cloud complex, one of the first times such a measurement has been made in a low-metallicity galaxy. Our results support the hypothesis that CO is photodissociated while H2 self-shields in the outer parts of low-metallicity GMCs, so that dust/self shielding is the primary factor determining the distribution of CO emission. Four pieces of evidence support this view. First, the CO-to-H2 conversion factor averaged over the whole cloud is very high 4-11 \times 10^21 cm^-2/(K km/s), or 20-55 times the Galactic value. Second, the CO-to-H2 conversion factor varies across the complex, with its lowest (most nearly Galactic) values near the CO peaks. Third, bright CO emission is largely confined to regions of relatively high line-of-sight extinction, A_V >~ 2 mag, in agreement with PDR models and Galactic observations. Fourth, a simple model in which CO emerges from a smaller sphere nested inside a larger cloud can roughly relate the H2 masses measured from CO kinematics and dust.Comment: 17 pages, 10 figures (including appendix), accepted for publication in the Astrophysical Journa

    Tracing the Bipolar Outflow from Orion Source I

    Get PDF
    Using CARMA, we imaged the 87 GHz SiO v=0 J=2-1 line toward Orion-KL with 0.45 arcsec angular resolution. The maps indicate that radio source I drives a bipolar outflow into the surrounding molecular cloud along a NE--SW axis, in agreement with the model of Greenhill et al. (2004). The extended high velocity outflow from Orion-KL appears to be a continuation of this compact outflow. High velocity gas extends farthest along a NW--SE axis, suggesting that the outflow direction changes on time scales of a few hundred years.Comment: 4 pages, 4 figures; accepted for publication in Ap J Letter

    A high-dispersion molecular gas component in nearby galaxies

    Get PDF
    We present a comprehensive study of the velocity dispersion of the atomic (H I) and molecular (H2) gas components in the disks (R R 25) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high-resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kiloparsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galactocentric distance, star formation rate surface density, H I surface density, H2 surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for H I of 11.9 ± 3.1 km s–1 and for CO of 12.0 ± 3.9 km s–1. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of H I, with an average ratio of σH I /σCO= 1.0 ± 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor of ~2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the H I disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points toward the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies

    A Detailed Study of the Radio--FIR Correlation in NGC6946 with Herschel-PACS/SPIRE from KINGFISH

    Get PDF
    We derive the distribution of the synchrotron spectral index across NGC6946 and investigate the correlation between the radio continuum (synchrotron) and far-infrared (FIR) emission using the KINGFISH Herschel PACS and SPIRE data. The radio--FIR correlation is studied as a function of star formation rate, magnetic field strength, radiation field strength, and the total gas surface brightness. The synchrotron emission follows both star-forming regions and the so-called magnetic arms present in the inter-arm regions. The synchrotron spectral index is steepest along the magnetic arms (αn1\alpha_n \sim 1), while it is flat in places of giant H{\sc ii} regions and in the center of the galaxy (αn0.60.7\alpha_n \sim 0.6-0.7). The map of αn\alpha_n provides an observational evidence for aging and energy loss of cosmic ray electrons propagating in the disk of the galaxy. Variations in the synchrotron--FIR correlation across the galaxy are shown to be a function of both star formation and magnetic fields. We find that the synchrotron emission correlates better with cold rather than with warm dust emission, when the interstellar radiation field is the main heating source of dust. The synchrotron--FIR correlation suggests a coupling between the magnetic field and the gas density. NGC6946 shows a power-law behavior between the total (turbulent) magnetic field strength B and the star formation rate surface density ΣSFR\Sigma_{\rm SFR} with an index of 0.14\,(0.16)±\pm0.01. This indicates an efficient production of the turbulent magnetic field with the increasing gas turbulence expected in actively star forming regions. The scale-by-scale analysis of the synchrotron--FIR correlation indicates that the ISM affects the propagation of old/diffused cosmic ray electrons, resulting in a diffusion coefficient of D0=4.6×1028D_0=4.6\times 10^{28}\,cm2^2\,s1^{-1} for 2.2\,GeV CREs.Comment: 23 pages, 13 figures, accepted for publication in Astronomy & Astrophysics Journa

    Kondo resonance effect on persistent currents through a quantum dot in a mesoscopic ring

    Full text link
    The persistent current through a quantum dot inserted in a mesoscopic ring of length L is studied. A cluster representing the dot and its vicinity is exactly diagonalized and embedded into the rest of the ring. The Kondo resonance provides a new channel for the current to flow. It is shown that due to scaling properties, the persistent current at the Kondo regime is enhanced relative to the current flowing either when the dot is at resonance or along a perfect ring of same length. In the Kondo regime the current scales as L1/2L^{-1/2}, unlike the L1L^{-1} scaling of a perfect ring. We discuss the possibility of detection of the Kondo effect by means of a persistent current measurement.Comment: 11 pages, 3 Postscript figure

    Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: NGC 628 and NGC 6946

    Get PDF
    We characterize the dust in NGC628 and NGC6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6um to 500um, dust models are strongly constrained. Using the Draine & Li (2007) dust model, (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons (PAH)s, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082+/-0.0017 for NGC628, and 0.0063+/-0.0009 for NGC6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor 3) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) "delta function" component. We find no evidence for significant masses of cold dust T<12K. Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70 and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.Comment: To be published in Apj, September 2012. See the full version at http://www.astro.princeton.edu/~ganiano/Papers

    Dust in the bright supernova remnant N49 in the LMC

    Get PDF
    We investigate the dust associated with the supernova remnant (SNR) N49 in the Large Magellanic Cloud (LMC) as observed with the Herschel Space Observatory. N49 is unusually bright because of an interaction with a molecular cloud along its eastern edge. We have used PACS and SPIRE to measure the far IR flux densities of the entire SNR and of a bright region on the eastern edge of the SNR where the SNR shock is encountering the molecular cloud. Using these fluxes supplemented with archival data at shorter wavelengths, we estimate the dust mass associated with N49 to be about 10 Msun. The bulk of the dust in our simple two-component model has a temperature of 20-30 K, similar to that of nearby molecular clouds. Unfortunately, as a result of the limited angular resolution of Herschel at the wavelengths sampled with SPIRE, the uncertainties are fairly large. Assuming this estimate of the dust mass associated with the SNR is approximately correct, it is probable that most of the dust in the SNR arises from regions where the shock speed is too low to produce significant X-ray emission. The total amount of warm 50-60 K dust is ~0.1 or 0.4 Msun, depending on whether the dust is modeled in terms of carbonaceous or silicate grains. This provides a firm lower limit to the amount of shock heated dust in N49.Comment: accepted by the Astronomy & Astrophysics Lette

    First astronomical unit scale image of the GW Ori triple. Direct detection of a new stellar companion

    Get PDF
    Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. We obtain the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ\rho\sim1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of \sim8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.Comment: 5 pages, 9 figures, accepted Astronomy and Astrophysics Letters. 201
    corecore