124 research outputs found

    Bone marrow dosimetry in low volume mHSPC patients receiving Lu-177-PSMA therapy using SPECT/CT

    Get PDF
    Background: Bone marrow toxicity in advanced prostate cancer patients who receive [177Lu]Lu-PSMA-617 is a well-known concern. In early stage patients; e.g. low volume metastatic hormone sensitive prostate cancer (mHSPC) patients, prevention of late bone marrow toxicity is even more crucial due to longer life expectancy. To date, bone marrow dosimetry is primarily performed using blood sampling. This method is time consuming and does not account for possible active bone marrow uptake. Therefore other methodologies are investigated. We calculated the bone marrow absorbed dose for [177Lu]Lu-PSMA-617 in mHSPC patients using SPECT/CT imaging and compared it to the blood sampling method as reference. Methods: Eight mHSPC patients underwent two cycles (3 and 6 GBq) of [177Lu]Lu-PSMA-617 therapy. After each cycle, five time point (1 h, 1 day, 2 days, 3 days, 7 days) SPECT/CT was performed at kidney level. Bone marrow dosimetry was performed using commercial software by drawing ten 1.5 cm diameter spheres in the lowest ten vertebrae to determine the time-integrated activity. Simplified protocols using only 2 imaging time points and 3 vertebrae were also compared. Blood-based dosimetry was based on the blood sampling method according to the EANM guideline. Results: Mean bone marrow absorbed dose was significantly different (p &lt; 0.01) for the imaging based method (25.4 ± 8.7 mGy/GBq) and the blood based method (17.2 ± 3.4 mGy/GBq), with an increasing absorbed dose ratio between both methods over time. Bland Altman analysis of both simplification steps showed that differences in absorbed dose were all within the 95% limits of agreement. Conclusion: This study showed that bone marrow absorbed dose after [177Lu]Lu-PSMA-617 can be determined using an imaging-based method of the lower vertebrae, and simplified using 2 time points (1 and 7 days) and 3 vertebrae. An increasing absorbed dose ratio over time between the imaging-based method and blood-based method suggests that there might be specific bone marrow binding of [177Lu]Lu-PSMA-617.</p

    Bone marrow dosimetry in low volume mHSPC patients receiving Lu-177-PSMA therapy using SPECT/CT

    Get PDF
    Background: Bone marrow toxicity in advanced prostate cancer patients who receive [177Lu]Lu-PSMA-617 is a well-known concern. In early stage patients; e.g. low volume metastatic hormone sensitive prostate cancer (mHSPC) patients, prevention of late bone marrow toxicity is even more crucial due to longer life expectancy. To date, bone marrow dosimetry is primarily performed using blood sampling. This method is time consuming and does not account for possible active bone marrow uptake. Therefore other methodologies are investigated. We calculated the bone marrow absorbed dose for [177Lu]Lu-PSMA-617 in mHSPC patients using SPECT/CT imaging and compared it to the blood sampling method as reference. Methods: Eight mHSPC patients underwent two cycles (3 and 6 GBq) of [177Lu]Lu-PSMA-617 therapy. After each cycle, five time point (1 h, 1 day, 2 days, 3 days, 7 days) SPECT/CT was performed at kidney level. Bone marrow dosimetry was performed using commercial software by drawing ten 1.5 cm diameter spheres in the lowest ten vertebrae to determine the time-integrated activity. Simplified protocols using only 2 imaging time points and 3 vertebrae were also compared. Blood-based dosimetry was based on the blood sampling method according to the EANM guideline. Results: Mean bone marrow absorbed dose was significantly different (p &lt; 0.01) for the imaging based method (25.4 ± 8.7 mGy/GBq) and the blood based method (17.2 ± 3.4 mGy/GBq), with an increasing absorbed dose ratio between both methods over time. Bland Altman analysis of both simplification steps showed that differences in absorbed dose were all within the 95% limits of agreement. Conclusion: This study showed that bone marrow absorbed dose after [177Lu]Lu-PSMA-617 can be determined using an imaging-based method of the lower vertebrae, and simplified using 2 time points (1 and 7 days) and 3 vertebrae. An increasing absorbed dose ratio over time between the imaging-based method and blood-based method suggests that there might be specific bone marrow binding of [177Lu]Lu-PSMA-617.</p

    Variability in lutetium-177 SPECT quantification between different state-of-the-art SPECT/CT systems

    Get PDF
    Background: Quantitative SPECT imaging in targeted radionuclide therapy with lutetium-177 holds great potential for individualized treatment based on dose assessment. The establishment of dose-effect relations requires a standardized method for SPECT quantification. The purpose of this multi-center study is to evaluate quantitative accuracy and inter-system variations of different SPECT/CT systems with corresponding commercially available quantitative reconstruction algorithms. This is an important step towards a vendor-independent standard for quantitative lutetium-177 SPECT. Methods: Four state-of-the-art SPECT/CT systems were included: Discovery™ NM/CT 670Pro (GE Healthcare), Symbia Intevo™, and two Symbia™ T16 (Siemens Healthineers). Quantitative accuracy and inter-system variations were evaluated by repeatedly scanning a cylindrical phantom with 6 spherical inserts (0.5 – 113 ml). A sphere-to-background activity concentration ratio of 10:1 was used. Acquisition settings were standardized: medium energy collimator, body contour trajectory, photon energy window of 208 keV (± 10%), adjacent 20% lower scatter window, 2 × 64 projections, 128 × 128 matrix size, and 40 s projection time. Reconstructions were performed using GE Evolution with Q.Metrix™, Siemens xSPECT Quant™, Siemens Broad Quantification™ or Siemens Flash3D™ algorithms using vendor recommended settings. In addition, projection data were reconstructed using Hermes SUV SPECT™ with standardized reconstruction settings to obtain a vendor-neutral quantitative reconstruction for all systems. Volumes of interest (VOI) for the spheres were obtained by applying a 50% threshold of the sphere maximum voxel value corrected for background activity. For each sphere, the mean and maximum recovery coefficient (RCmean and RCmax) of three repeated measurements was calculated, defined as the imaged activity concentration divided by the actual activity concentration. Inter-system variations were defined as the range of RC over all systems. Re

    Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate

    Get PDF
    Adequate dosimetry is mandatory for effective and safe peptide receptor radionuclide therapy (PRRT). Besides the kidneys, the bone marrow is a potentially dose-limiting organ. The radiation dose to the bone marrow is usually calculated according to the MIRD scheme, where the accumulated activity in the bone marrow is calculated from the accumulated radioactivity of the radiopharmaceutical in the blood. This may underestimate the absorbed dose since stem cells express somatostatin receptors. We verified the blood-based method by comparing the activity in the blood with the radioactivity in bone marrow aspirates. Also, we evaluated the absorbed cross-dose from the source organs (liver, spleen, kidneys and blood), tumours and the so-called "remainder of the body" to the bone marrow

    Proton Dynamics in Protein Mass Spectrometry

    Get PDF
    Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-β peptide (Aβ(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants

    Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy (177Lu-PSMA-RLT)

    Get PDF
    Prostate-specific membrane antigen (PSMA) is expressed by the majority of clinically significant prostate adenocarcinomas, and patients with target-positive disease can easily be identified by PSMA PET imaging. Promising results with PSMA-targeted radiopharmaceutical therapy have already been obtained in early-phase studies using various combinations of targeting molecules and radiolabels. Definitive evidence of the safety and efficacy of [177Lu]Lu-PSMA-617 in combination with standard-of-care has been demonstrated in patients with metastatic castration-resistant prostate cancer, whose disease had progressed after or during at least one taxane regimen and at least one novel androgen-axis drug. Preliminary data suggest that 177Lu-PSMA-radioligand therapy (RLT) also has high potential in additional clinical situations. Hence, the radiopharmaceuticals [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&amp;T are currently being evaluated in ongoing phase 3 trials. The purpose of this guideline is to assist nuclear medicine personnel, to select patients with highest potential to benefit from 177Lu-PSMA-RLT, to perform the procedure in accordance with current best practice, and to prepare for possible side effects and their clinical management. We also provide expert advice, to identify those clinical situations which may justify the off-label use of [177Lu]Lu-PSMA-617 or other emerging ligands on an individual patient basis

    Dose-response effect of Gelofusine on renal uptake and retention of radiolabelled octreotate in rats with CA20948 tumours

    Get PDF
    Purpose: Peptide receptor radionuclide therapy using β-emitting radiolabelled somatostatin analogues like DOTA,Tyr3-octreotate shows beneficial results in patients suffering from somatostatin receptor overexpressing tumours. However, after high-dose therapy partial renal reabsorption of radiopeptides may lead to nephrotoxicity. Co-infusion of lysine/arginine lowers renal retention of these radiopeptides without affecting tumour uptake. Recently co-administration of Gelofusine has been described to have a comparable kidney-protecting effect in rats. In the present study optimal dosing of Gelofusine co-administration was studied in tumour-bearing rats. Methods: Doses of 40, 80, 120 or 160 mg/kg Gelofusine were co-injected with 15 μg DOTA,Tyr3-octreotate, labelled with 3 MBq111In for biodistribution (24 h post-injection, n=4 per group) and with 60 MBq111In for microSPECT imaging experiments at 3, 24 and 48 h post-injection. An additional group of rats received 80 mg/kg Gelofusine plus 400 mg/kg lysine co-injection. Biodistribution studies were performed both in older (475 g) and younger (300 g) rats, the latter bearing CA20948 tumours. Results: Co-injection of 40 mg/kg Gelofusine resulted in 40-50% reduction of renal uptake and retention of111In-DOTA,Tyr3-octreotate, whereas higher doses further increased the reduction to 50-60% in both groups of rats. Combining Gelofusine and lysine caused 70% reduction of renal uptake. The uptake of radiolabelled octreotate both in somatostatin receptor-expressing normal tissues and tumours was not affected by Gelofusine co-injection. Conclusion: In rats co-injection of 80 mg/kg Gelofusine resulted in maximum reduction of renal retention of111In-DOTA,Tyr3- octreotate, which was further improved when combined with lysine. Tumour uptake of radiolabelled octreotate was not affected, resulting in an increased tumour to kidney ratio
    • …
    corecore