6,049 research outputs found

    Channeling 5-min photospheric oscillations into the solar outer atmosphere through small-scale vertical magnetic flux tubes

    Full text link
    We report two-dimensional MHD simulations which demonstrate that photospheric 5-min oscillations can leak into the chromosphere inside small-scale vertical magnetic flux tubes. The results of our numerical experiments are compatible with those inferred from simultaneous spectropolarimetric observations of the photosphere and chromosphere obtained with the Tenerife Infrared Polarimeter (TIP) at 10830 A. We conclude that the efficiency of energy exchange by radiation in the solar photosphere can lead to a significant reduction of the cut-off frequency and may allow for the propagation of the 5 minutes waves vertically into the chromosphere.Comment: accepted by ApJ

    One-dimensional metallic behavior of the stripe phase in La2x_{2-x}Srx_xCuO4_4

    Full text link
    Using an exact diagonalization method within the dynamical mean-field theory we study stripe phases in the two-dimensional Hubbard model. We find a crossover at doping δ0.05\delta\simeq 0.05 from diagonal stripes to vertical site-centered stripes with populated domain walls, stable in a broad range of doping, 0.05<δ<0.170.05<\delta<0.17. The calculated chemical potential shift δ2\propto -\delta^2 and the doping dependence of the magnetic incommensurability are in quantitative agreement with the experimental results for doped La2x_{2-x}Srx_xCuO4_4. The electronic structure shows one-dimensional metallic behavior along the domain walls, and explains the suppression of spectral weight along the Brillouin zone diagonal.Comment: 4 pages, 4 figure

    Space power distribution system technology. Volume 2: Autonomous power management

    Get PDF
    Electrical power subsystem requirements, power management system functional requirements, algorithms, power management subsystem, hardware development, and trade studies and analyses are discussed

    Space power distribution system technology. Volume 1: Reference EPS design

    Get PDF
    The multihundred kilowatt electrical power aspects of a mannable space platform in low Earth orbit is analyzed from a cost and technology viewpoint. At the projected orbital altitudes, Shuttle launch and servicing are technically and economically viable. Power generation is specified as photovoltaic consistent with projected planning. The cost models and trades are based upon a zero interest rate (the government taxes concurrently as required), constant dollars (1980), and costs derived in the first half of 1980. Space platform utilization of up to 30 years is evaluated to fully understand the impact of resupply and replacement as satellite missions are extended. Such lifetimes are potentially realizable with Shuttle servicing capability and are economically desirable

    Extending the linear-noise approximation to biochemical systems influenced by intrinsic noise and slow lognormally distributed extrinsic noise

    Get PDF
    It is well known that the kinetics of an intracellular biochemical network is stochastic. This is due to intrinsic noise arising from the random timing of biochemical reactions in the network as well as due to extrinsic noise stemming from the interaction of unknown molecular components with the network and from the cell's changing environment. While there are many methods to study the effect of intrinsic noise on the system dynamics, few exist to study the influence of both types of noise. Here we show how one can extend the conventional linear-noise approximation to allow for the rapid evaluation of the molecule numbers statistics of a biochemical network influenced by intrinsic noise and by slow lognormally distributed extrinsic noise. The theory is applied to simple models of gene regulatory networks and its validity confirmed by comparison with exact stochastic simulations. In particular we show how extrinsic noise modifies the dependence of the variance of the molecule number fluctuations on the rate constants, the mutual information between input and output signalling molecules and the robustness of feed-forward loop motifs.Comment: 43 pages, 4 figure

    Radiative transfer in very optically thick circumstellar disks

    Get PDF
    In this paper we present two efficient implementations of the diffusion approximation to be employed in Monte Carlo computations of radiative transfer in dusty media of massive circumstellar disks. The aim is to improve the accuracy of the computed temperature structure and to decrease the computation time. The accuracy, efficiency and applicability of the methods in various corners of parameter space are investigated. The effects of using these methods on the vertical structure of the circumstellar disk as obtained from hydrostatic equilibrium computations are also addressed. Two methods are presented. First, an energy diffusion approximation is used to improve the accuracy of the temperature structure in highly obscured regions of the disk, where photon counts are low. Second, a modified random walk approximation is employed to decrease the computation time. This modified random walk ensures that the photons that end up in the high-density regions can quickly escape to the lower density regions, while the energy deposited by these photons in the disk is still computed accurately. A new radiative transfer code, MCMax, is presented in which both these diffusion approximations are implemented. These can be used simultaneously to increase both computational speed and decrease statistical noise. We conclude that the diffusion approximations allow for fast and accurate computations of the temperature structure, vertical disk structure and observables of very optically thick circumstellar disks.Comment: Accepted for publication in A&

    Optical conductivity of one-dimensional doped Hubbard-Mott insulator

    Full text link
    We study the optical response of a strongly correlated electron system near the metal-insulator transition using a mapping to the sine-Gordon model. With semiclassical quantization, the spectral weight is distributed between a Drude peak and absorption lines due to breathers. We calculate the Drude weight, the optical gap, and the lineshape of breather absorption.Comment: 4 pages, 2 EPS figures, REVTEX 4, a final versio
    corecore