147 research outputs found

    Temporal and spatial variability of glyoxal as observed from space

    Get PDF
    Glyoxal, CHO.CHO, is produced during the oxidation of volatile organic compounds, VOC, released by anthropogenic activities, biogenic processes and biomass burning. It has a short chemical lifetime of a few hours in the boundary layer and lower troposphere and therefore serves as an indicator and a marker of photochemical hot-spots and their response to changing atmospheric conditions around the globe. For this reason more than five years of CHO.CHO observations (2002–2007), retrieved from the radiances measured by the satellite instrument SCIAMACHY, were obtained and analyzed both temporally and spatially. The largest columns of CHO.CHO (>6.10<sup>14</sup> molec cm<sup>−2</sup>) are found in the tropical and sub-tropical regions, associated with high biological activity and the plumes from vegetation fires. The majority of the identified hot spots are characterized by a well-defined seasonality: the highest values being observed during the warm and dry periods as a result of the enhanced biogenic, primarily isoprene, emissions and/or biomass burning from natural or man-made fires. The regions influenced by anthropogenic pollution also encounter enhanced amounts of glyoxal. The ratio "CHO.CHO to HCHO, R<sub><I>GF</I></sub>" over the biogenically influenced photochemical hot-spots is approximately 0.045. For the studied regions, the presence of pyrogenic and anthropogenic emissions increases and decreases this number respectively. Although the 2002–2007 period of observation is limited, over the northeastern Asia a significant annual increase in CHO.CHO in addition to a seasonal cycle is reported

    Oxidative stress stimulates alpha-tocopherol transfer protein in human trophoblast tumor cells BeWo

    Get PDF
    alpha-Tocopherol transfer protein (alpha-TTP) has been identified as the major intracellular transport protein for the antioxidant vitamin E (alpha-Tocopherol). Expression of alpha-TTP on the reproductive system has been described both in mouse uterus and lately in the human placenta. The aim of this study was to clarify if placental expression of alpha-TTP can be modified by substances causing oxidative reactions. The human choriocarcinoma cell line BeWo was, therefore, treated with two known pro-oxidants. alpha-TTP expression was determined with immunocytochemistry and evaluated by applying a semiquantitative score. The presence of pro-oxidants in BeWo cells induced alpha-TTP expression. We thus hypothesize that stimulation of alpha-TTP expression by oxidative stress, as this was induced by pro-oxidants, could be part of an antioxidant process occurring in the placenta in the aim of enhancing the supply of alpha-Tocopherol. This process could occur both in normal pregnancies, as well as in pregnancy disorders presented with intensified oxidative stress. In that view, this model is proposed for further oxidative stress studies on trophoblast and placenta, on the grounds of clarifying the role of alpha-Tocopherol in pregnancy physiology and pathophysiology

    Satellite measurements of formaldehyde linked to shipping emissions

    Get PDF
    International shipping is recognized as a pollution source of growing importance, in particular in the remote marine boundary layer. Nitrogen dioxide originating from ship emissions has previously been detected in satellite measurements. This study presents the first satellite measurements of formaldehyde (HCHO) linked to shipping emissions as derived from observations made by the Global Ozone Monitoring Experiment (GOME) instrument. <br><br> We analyzed enhanced HCHO tropospheric columns from shipping emissions over the Indian Ocean between Sri Lanka and Sumatra. This region offers good conditions in term of plume detection with the GOME instrument as all ship tracks follow a single narrow track in the same east-west direction as used for the GOME pixel scanning. The HCHO signal alone is weak but could be clearly seen in the high-pass filtered data. The line of enhanced HCHO in the Indian Ocean as seen in the 7-year composite of cloud free GOME observations clearly coincides with the distinct ship track corridor from Sri Lanka to Indonesia. The observed mean HCHO column enhancement over this shipping route is about 2.0×10<sup>15</sup> molec/cm<sup>2</sup>. <br><br> Compared to the simultaneously observed NO<sub>2</sub> values over the shipping route, those of HCHO are substantially higher; also the HCHO peaks are found at larger distance from the ship routes. These findings indicate that direct emissions of HCHO or degradation of emitted NMHC cannot explain the observed enhanced HCHO values. One possible reason might be increased CH<sub>4</sub> degradation due to enhanced OH concentrations related to the ship emissions, but this source is probably too weak to fully explain the observed values. <br><br> The observed HCHO pattern also agrees qualitatively well with results from the coupled earth system model ECHAM5/MESSy applied to atmospheric chemistry (EMAC). However, the modelled HCHO values over the ship corridor are two times lower than in the GOME high-pass filtered data. This might indicate uncertainties in the satellite data and used emission inventories and/or that the in-plume chemistry taking place in the narrow path of the shipping lanes are not well represented at the rather coarse model resolution

    The influence of natural and anthropogenic secondary sources on the glyoxal global distribution

    Get PDF
    Glyoxal, the smallest dicarbonyl, which has recently been observed from space, is expected to provide indications on volatile organic compounds (VOC) oxidation and secondary aerosol formation in the troposphere. Glyoxal (CHOCHO) is known to be mostly of natural origin and is produced during biogenic VOC oxidation. However, a number of anthropogenically emitted hydrocarbons, like acetylene and aromatics, have been positively identified as CHOCHO precursors. The present study investigates the contribution of pollution to the CHOCHO levels by taking into account the secondary chemical formation of CHOCHO from precursors emitted from biogenic, anthropogenic and biomass burning sources. The impact of potential primary land emissions of CHOCHO is also investigated. A global 3-dimensional chemistry transport model of the troposphere (TM4-ECPL) able to simulate the gas phase chemistry coupled with all major aerosol components is used. <br><br> The secondary anthropogenic contribution from fossil fuel and industrial VOCs emissions oxidation to the CHOCHO columns is found to reach 20–70% in the industrialized areas of the Northern Hemisphere and 3–20% in the tropics. This secondary CHOCHO source is on average three times larger than that from oxidation of VOCs from biomass burning sources. The chemical production of CHOCHO is calculated to equal to about 56 Tg y<sup>−1</sup> with 70% being produced from biogenic hydrocarbons oxidation, 17% from acetylene, 11% from aromatic chemistry and 2% from ethene and propene. CHOCHO is destroyed in the troposphere primarily by reaction with OH radicals (23%) and by photolysis (63%), but it is also removed from the atmosphere through wet (8%) and dry deposition (6%). Potential formation of secondary organic aerosol through CHOCHO losses on/in aerosols and clouds is neglected here due to the significant uncertainties associated with the underlying chemistry. The global annual mean CHOCHO burden and lifetime in the model domain are estimated to be 0.02 Tg (equal to the global burden seen by SCIAMACHY over land for the year 2005) and about 3 h, respectively. The model results are compared with satellite observations of CHOCHO columns. When accounting only for the secondary sources of CHOCHO in the model, the model underestimates CHOCHO columns observed by satellites. This is attributed to an overestimate of CHOCHO sinks or a missing global source of about 20 Tg y<sup>−1</sup>. Using the current primary emissions of CHOCHO from biomass burning together with the anthropogenic combustion sources of about 7 Tg y<sup>−1</sup> leads to an overestimate by the model over hot spot areas

    Increased apoptosis of neutrophils in induced sputum of COPD patients

    Get PDF
    SummaryAimThe aim of the current study was to evaluate apoptosis in induced sputum neutrophils and to investigate the relationship between the number of apoptotic cells and clinical parameters in COPD patients.MethodsTwenty-four COPD ex-smoker patients and 10 healthy controls were included in the study. All subjects underwent clinical evaluation and sputum induction. Sputum cell in situ apoptosis was identified using white light microscopy and TUNEL assay technique. Apoptosis of neutrophils obtained by sputum induction was expressed as apoptotic rate (AR=percentage of apoptotic neutrophils over the number of neutrophils measured).ResultsTUNEL assay revealed statistically significant higher AR in COPD patients than controls (p=0.004). Patients with FEV1<50%pred had significantly higher median (IQR) AR (%) compared to patients with FEV1≥50% [26.3 (16–29) vs 13.1 (8.6–21), p=0.01]. No significant association was found between the number of apoptotic cells and age, symptoms or medication used.ConclusionThe significantly increased apoptotic rate of neutrophils that were found in COPD patients with advanced disease compared to controls might reflect either a deregulation of apoptosis of neutrophils or, a reduced clearance of apoptotic neutrophils from the airways. The pathophysiologic significance of the observed phenomenon has to be further explored

    Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017

    Get PDF
    Megacities and other major population centres (MPCs) worldwide are major sources of air pollution, both locally as well as downwind. The overall assessment and prediction of the impact of MPC pollution on tropospheric chemistry are challenging. The present work provides an overview of the highlights of a major new contribution to the understanding of this issue based on the data and analysis of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) international project. EMeRGe focuses on atmospheric chemistry, dynamics, and transport of local and regional pollution originating in MPCs. Airborne measurements, taking advantage of the long range capabilities of the High Altitude and LOng Range Research Aircraft (HALO, https://www.halo-spp.de, last access: 22 March 2022), are a central part of the project. The synergistic use and consistent interpretation of observational data sets of different spatial and temporal resolution (e.g. from ground-based networks, airborne campaigns, and satellite measurements) supported by modelling within EMeRGe provide unique insight to test the current understanding of MPC pollution outflows. In order to obtain an adequate set of measurements at different spatial scales, two field experiments were positioned in time and space to contrast situations when the photochemical transformation of plumes emerging from MPCs is large. These experiments were conducted in summer 2017 over Europe and in the inter-monsoon period over Asia in spring 2018. The intensive observational periods (IOPs) involved HALO airborne measurements of ozone and its precursors, volatile organic compounds, aerosol particles, and related species as well as coordinated ground-based ancillary observations at different sites. Perfluorocarbon (PFC) tracer releases and model forecasts supported the flight planning, the identification of pollution plumes, and the analysis of chemical transformations during transport. This paper describes the experimental deployment and scientific questions of the IOP in Europe. The MPC targets – London (United Kingdom; UK), the Benelux/Ruhr area (Belgium, the Netherlands, Luxembourg and Germany), Paris (France), Rome and the Po Valley (Italy), and Madrid and Barcelona (Spain) – were investigated during seven HALO research flights with an aircraft base in Germany for a total of 53 flight hours. An in-flight comparison of HALO with the collaborating UK-airborne platform Facility for Airborne Atmospheric Measurements (FAAM) took place to assure accuracy and comparability of the instrumentation on board. Overall, EMeRGe unites measurements of near- and far-field emissions and hence deals with complex air masses of local and distant sources. Regional transport of several European MPC outflows was successfully identified and measured. Chemical processing of the MPC emissions was inferred from airborne observations of primary and secondary pollutants and the ratios between species having different chemical lifetimes. Photochemical processing of aerosol and secondary formation or organic acids was evident during the transport of MPC plumes. Urban plumes mix efficiently with natural sources as mineral dust and with biomass burning emissions from vegetation and forest fires. This confirms the importance of wildland fire emissions in Europe and indicates an important but discontinuous contribution to the European emission budget that might be of relevance in the design of efficient mitigation strategies. The present work provides an overview of the most salient results in the European context, with these being addressed in more detail within additional dedicated EMeRGe studies. The deployment and results obtained in Asia will be the subject of separate publications.The HALO deployment during EMeRGe was funded by a consortium comprising the German Research Foundation (DFG) Priority Program HALO-SPP 1294, the Institute of Atmospheric Physics of DLR, the Max Planck Society (MPG), and the Helmholtz Association. Flora Kluge, Benjamin Schreiner, and Klaus Pfeilsticker acknowledge the support given by the DFG through the project nos. PF 384-16, PF 384-17, and PG 385-19. Ralf Koppmann and Marc Krebsbach acknowledge DFG funding through project no. KR3861_1-1. Katja Bigge acknowledges additional funding from the Heidelberg Graduate School for Physics. Johannes Schneider, Katharina Kaiser, and Stephan Borrmann acknowledge funding through the DFG (project no. 316589531). Lisa Eirenschmalz and Hans Schlager acknowledge support by DFG through project MEPOLL (SCHL1857/4-1). Anna B. Kalisz Hedegaard would like to thank DAAD and DLR for a Research Fellowship. Hans Schlager acknowledge financial support by the DLR TraK (Transport and Climate) project. Michael Sicard acknowledges support from the EU (GA nos. 654109, 778349, 871115, and 101008004) and the Spanish Government (ref. nos. CGL2017-90884-REDT, PID2019-103886RB-I00, RTI2018-096548-B-I00, and MDM-2016-0600). Midhun George, Yangzhuoran Liu, M. Dolores Andrés Hernández, and John Phillip Burrows acknowledge financial support from the University of Bremen. FLEXPART simulations were performed on the HPC cluster Aether at the University of Bremen, financed by DFG within the scope of the Excellence Initiative. Anne-Marlene Blechschmidt was partly funded through the CAMS-84 project. Jennifer Wolf acknowledges support from the German Federal Ministry for Economic Affairs and Energy – BMWi (project Digitally optimized Engineering for Services – DoEfS; contract no. 20X1701B). Theresa Harlass thanks DLR VOR for funding the young investigator research group “Greenhouse Gases”. Mariano Mertens, Patrick Jöckel, and Markus Kilian acknowledge resources of the Deutsches Klimarechenzentrum (DKRZ) granted by the WLA project ID bd0617 for the MECO(n) simulations and the financial support from the DLR projects TraK (Transport und Klima) and the Initiative and Networking Fund of the Helmholtz Association through the project “Advanced Earth System Modelling Capacity” (ESM). Bruna A. Holanda acknowledges the funding from Brazilian CNPq (process 200723/2015-4).Peer ReviewedArticle signat per 53 autors/es: M. Dolores Andrés Hernández (1), Andreas Hilboll (2), Helmut Ziereis (3), Eric Förster (4), Ovid O. Krüger (5), Katharina Kaiser (6,7), Johannes Schneider (7), Francesca Barnaba (8), Mihalis Vrekoussis (2,18), Jörg Schmidt (9), Heidi Huntrieser (3), Anne-Marlene Blechschmidt (1), Midhun George (1), Vladyslav Nenakhov (1,a), Theresa Harlass (3), Bruna A. Holanda (5), Jennifer Wolf (3), Lisa Eirenschmalz (3), Marc Krebsbach (10), Mira L. Pöhlker (5,b), Anna B. Kalisz Hedegaard (3,2), Linlu Mei (1), Klaus Pfeilsticker (11), Yangzhuoran Liu (1), Ralf Koppmann (10), Hans Schlager (3), Birger Bohn (12), Ulrich Schumann (3), Andreas Richter (1), Benjamin Schreiner (11), Daniel Sauer (3), Robert Baumann (3), Mariano Mertens (3), Patrick Jöckel (3), Markus Kilian (3), Greta Stratmann (3,c,) Christopher Pöhlker (5), Monica Campanelli (8), Marco Pandolfi (13), Michael Sicard (14,15), José L. Gómez-Amo (16), Manuel Pujadas (17), Katja Bigge (11), Flora Kluge (11), Anja Schwarz (9), Nikos Daskalakis (2), David Walter (5), Andreas Zahn (4), Ulrich Pöschl (5), Harald Bönisch (4), Stephan Borrmann (6,7), Ulrich Platt (11), and John P. Burrows (1) // (1) Institute of Environmental Physics, University of Bremen, Bremen, Germany; (2) Laboratory for Modeling and Observation of the Earth System, Institute of Environmental Physics, Bremen, Germany; (3) Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany; (4) Atmospheric Trace Gases and Remote Sensing, Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany; (5) Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; (6) Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany, (7) Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; (8) National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Rome, Italy; (9) Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany; (10) Institute for Atmospheric and Environmental Research, University of Wuppertal, Wuppertal, Germany; (11) Institute for Environmental Physics, University of Heidelberg, Heidelberg, Germany, (12) Institute of Energy and Climate Research IEK-8, Forschungszentrum Jülich, Jülich, Germany; (13) Consejo Superior de Investigaciones Científicas, Institute of Environmental Assessment and Water Research, Barcelona, Spain; (14) CommSensLab, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain; (15) Ciències i Tecnologies de l’Espai-Centre de Recerca de l’Aeronàutica i de l’Espai/Institut d’Estudis Espacials de Catalunya), Universitat Politècnica de Catalunya, Barcelona, Spain; (16) Department of Earth Physics and Thermodynamics, University of Valencia, Burjassot, Spain; (17) Atmospheric Pollution Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat), Madrid, Spain; (18) Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus anow at: Flight Experiments, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyPostprint (published version

    Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols

    Get PDF
    Author name used in this publication: Fu, Tzung-May.2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Effects on surface atmospheric photo-oxidants over Greece during the total solar eclipse event of 29 March 2006

    Get PDF
    International audienceThis study investigates the effects of the total solar eclipse of 29 March 2006 on surface air-quality levels over Greece based on observations at a number of sites in conjunction with chemical box modelling and 3-D air-quality modelling. Emphasis is given on surface ozone and other photooxidants at four Greek sites Kastelorizo, Finokalia (Crete), Pallini (Athens) and Thessaloniki, which are located at gradually increasing distances from the path of the eclipse totality and are characterized by different air pollution levels. The eclipse offered the opportunity to test our understanding of air pollution build-up and the response of the gas-phase chemistry of photo-oxidants during a photolytical perturbation using both a photochemical box model and a regional air-quality offline model based on the modeling system WRF/CAMx. At the relatively unpolluted sites of Kastelorizo and Finokalia no clear impact of the solar eclipse on surface O3, NO2 and NO concentrations can be deduced from the observations and model simulations as the calculated changes in net ozone production rates between eclipse and non eclipse conditions are rather small compared to the ozone variability and hence the solar eclipse effects on ozone can be easily masked by transport. At the polluted sites of Thessaloniki and Pallini, the solar eclipse effects on O3, NO2 and NO concentrations are clearly revealed from both the measurements and 3-D air-quality modeling with the net effect being a decrease in O3 and NO and an increase in NO2 as NO2 formed from the reaction of O3 with NO while at the same time NO2 is not efficiently photolysed. It is evident from the 3-D air quality modeling over Greece that the maximum effects of the eclipse on O3, NO2 and NO are reflected at the large urban agglomerations of Athens, and Thessaloniki where the maximum of the emissions occur

    Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations

    Get PDF
    The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) on board has been measuring solar radiation backscattered by the Earth\u27s atmosphere and surface since its launch on 13 October 2017. In this paper, we present for the first time the S5P operational methane (CH4) and carbon monoxide (CO) products\u27 validation results covering a period of about 3 years using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application of advanced co-location criteria. We found that the S5P standard and bias-corrected CH4 data over land surface for the recommended quality filtering fulfil the mission requirements. The systematic difference of the bias-corrected total column-averaged dry air mole fraction of methane (XCH4) data with respect to TCCON data is -0.26 +/- 0.56 % in comparison to -0.68 +/- 0.74 % for the standard XCH4 data, with a correlation of 0.6 for most stations. The bias shows a seasonal dependence. We found that the S5P CO data over all surfaces for the recommended quality filtering generally fulfil the missions requirements, with a few exceptions, which are mostly due to co-location mismatches and limited availability of data. The systematic difference between the S5P total column-averaged dry air mole fraction of carbon monoxide (XCO) and the TCCON data is on average 9.22 +/- 3.45 % (standard TCCON XCO) and 2.45 +/- 3.38 % (unscaled TCCON XCO). We found that the systematic difference between the S5P CO column and NDACC CO column (excluding two outlier stations) is on average 6.5 +/- 3.54 %. We found a correlation of above 0.9 for most TCCON and NDACC stations. The study shows the high quality of S5P CH4 and CO data by validating the products against reference global TCCON and NDACC stations covering a wide range of latitudinal bands, atmospheric conditions and surface conditions
    corecore