443 research outputs found

    How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure

    Get PDF
    ‘Oxygen-tolerant’ [NiFe]-hydrogenases can catalyze H(2) oxidation under aerobic conditions, avoiding oxygenation and destruction of the active site. In one mechanism accounting for this special property, membrane-bound [NiFe]-hydrogenases accommodate a pool of electrons that allows an O(2) molecule attacking the active site to be converted rapidly to harmless water. An important advantage may stem from having a dimeric or higher-order quaternary structure in which the electron-transfer relay chain of one partner is electronically coupled to that in the other. Hydrogenase-1 from E. coli has a dimeric structure in which the distal [4Fe-4S] clusters in each monomer are located approximately 12 Å apart, a distance conducive to fast electron tunneling. Such an arrangement can ensure that electrons from H(2) oxidation released at the active site of one partner are immediately transferred to its counterpart when an O(2) molecule attacks. This paper addresses the role of long-range, inter-domain electron transfer in the mechanism of O(2)-tolerance by comparing the properties of monomeric and dimeric forms of Hydrogenase-1. The results reveal a further interesting advantage that quaternary structure affords to proteins

    A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants

    Get PDF
    Transposition of the Anthirrinum majus Tam3 element and the Zea mays Ac element has been monitored in petunia and tobacco plants. Plant vectors were constructed with the transposable elements cloned into the leader sequence of a marker gene. Agrobacterium tumefaciens-mediated leaf disc transformation was used to introduce the transposable element constructs into plant cells. In transgenic plants, excision of the transposable element restores gene expression and results in a clearly distinguishable phenotype. Based on restored expression of the hygromycin phosphotransferase II (HPTII) gene, we established that Tam3 excises in 30% of the transformed petunia plants and in 60% of the transformed tobacco plants. Ac excises from the HPTII gene with comparable frequencies (30%) in both plant species. When the β-glucuronidase (GUS) gene was used to detect transposition of Tam3, a significantly lower excision frequency (13%) was found in both plant species. It could be shown that deletion of parts of the transposable elements Tam3 and Ac, removing either one of the terminal inverted repeats (TIR) or part of the presumptive transposase coding region, abolished the excision from the marker genes. This demonstrates that excision of the transposable element Tam3 in heterologous plant species, as documented for the autonomous element Ac, also depends on both properties. Southern blot hybridization shows the expected excision pattern and the reintegration of Tam3 and Ac elements into the genome of tobacco plants.

    Re-engineering a NiFe hydrogenase to increase the H2 production bias while maintaining native levels of O2 tolerance

    Get PDF
    Naturally occurring oxygen tolerant NiFe membrane bound hydrogenases have a conserved catalytic bias towards hydrogen oxidation which limits their technological value. We present an Escherichia coli Hyd-1 amino acid exchange that apparently causes the catalytic rate of H2 production to double but does not impact the O2 tolerance

    Rate control efficacy in permanent atrial fibrillation:a comparison between lenient versus strict rate control in patients with and without heart failure. Background, aims, and design of RACE II

    Get PDF
    BACKGROUND: Recent studies demonstrated that rate control is an acceptable alternative for rhythm control in patients with persistent atrial fibrillation (AF). However, optimal heart rate during AF is still unknown. OBJECTIVE: To show that in patients with permanent AF, lenient rate control is not inferior to strict rate control in terms of cardiovascular mortality, morbidity, neurohormonal activation, New York Heart Association class for heart failure, left ventricular function, left atrial size, quality of life, and costs. METHODS: The RACE II study is a prospective multicenter trial in The Netherlands that will randomize 500 patients with permanent AF (< or = 12 months) to strict or lenient rate control. Strict rate control is defined as a mean resting heart rate < 80 beats per minute (bpm) and heart rate during minor exercise < 110 bpm. After reaching the target, a 24-hour Holter monitoring will be performed. If necessary, drug dose reduction and/or pacemaker implantation will be performed. Lenient rate control is defined as a resting heart rate < 110 bpm. Patients will be seen after 1, 2, and 3 months (for titration of rate control drugs) and yearly thereafter. We anticipate a 25% 2.5-year cardiovascular morbidity and mortality in both groups. RESULTS: Enrollment started in January 2005 in 29 centers in The Netherlands and is expected to be concluded in June 2006. Follow-up will be at least 2 years with a maximum of 3 years. CONCLUSION: This study should provide data how to treat patients with permanent AF

    Biochemical properties of Paracoccus denitrificans FnrP:Reactions with molecular oxygen and nitric oxide

    Get PDF
    In Paracoccus denitrificans, three CRP/FNR family regulatory proteins, NarR, NnrR and FnrP, control the switch between aerobic and anaerobic (denitrification) respiration. FnrP is a [4Fe-4S] cluster containing homologue of the archetypal O2 sensor FNR from E. coli and accordingly regulates genes encoding aerobic and anaerobic respiratory enzymes in response to O2, and also NO, availability. Here we show that FnrP undergoes O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion that involves up to 2 O2 per cluster, with significant oxidation of released cluster sulfide to sulfane observed at higher O2 concentrations. The rate of the cluster reaction was found to be ~6-fold lower than that of E. coli FNR, suggesting that FnrP can remain transcriptionally active under microaerobic conditions. This is consistent with a role for FnrP in activating expression of the high O2 affinity cytochrome c oxidase under microaerobic conditions. Cluster conversion resulted in dissociation of the transcriptionally active FnrP dimer into monomers. Therefore, along with E. coli FNR, FnrP belongs to the subset of FNR proteins in which cluster type is correlated with association state. Interestingly, two key charged residues, Arg140 and Asp154, that have been shown to play key roles in the monomer-dimer equilibrium in E. coli FNR are not conserved in FnrP, indicating that different protomer interactions are important for this equilibrium. Finally, the FnrP [4Fe-4S] cluster is shown to undergo reaction with multiple NO molecules, resulting in iron nitrosyl species and dissociation into monomers

    Relationship of circulating hyaluronic Acid levels to disease control in asthma and asthmatic pregnancy.

    Get PDF
    Uncontrolled asthma is a risk factor for pregnancy-related complications. Hyaluronic acid (HA), a potential peripheral blood marker of tissue fibrosis in various diseases, promotes eosinophil survival and plays a role in asthmatic airway inflammation as well as in physiological processes necessary to maintain normal pregnancy; however the level of circulating HA in asthma and asthmatic pregnancy is unknown. We investigated HA levels in asthmatic patients (N = 52; asthmatic pregnant (AP) N = 16; asthmatic non-pregnant (ANP) N = 36) and tested their relationship to asthma control. Serum HA level was lower in AP than in ANP patients (27 [24.7-31.55] vs. 37.4 [30.1-66.55] ng/mL, p = 0.006); the difference attenuated to a trend after its adjustment for patients' age (p = 0.056). HA levels and airway resistance were positively (r = 0.467, p = 0.004), HA levels and Asthma Control Test (ACT) total score inversely (r = -0.437, p = 0.01) associated in ANP patients; these relationships remained significant even after their adjustments for age. The potential value of HA in the determination of asthma control was analyzed using ROC analysis which revealed that HA values discriminate patients with ACT total score >/=20 (controlled patients) and <20 (uncontrolled patients) with a 0.826 efficacy (AUC, 95% CI: 0.69-0.97, p = 0.001) when 37.4 ng/mL is used as cut-off value in ANP group, and with 0.78 efficacy (AUC, 95% CI: 0.65-0.92, p = 0.0009) in the whole asthmatic cohort. In conclusion circulating HA might be a marker of asthma control, as it correlates with airway resistance and has good sensitivity in the detection of impaired asthma control. Decrease of HA level in pregnancy may be the consequence of pregnancy induced immune tolerance

    Photochemical dihydrogen production using an analogue of the active site of [NiFe] hydrogenase

    Get PDF
    The photoproduction of dihydrogen (H2) by a low molecular weight analogue of the active site of [NiFe] hydrogenase has been investigated by the reduction of the [NiFe2] cluster, 1, by a photosensitier PS (PS = [ReCl(CO)3(bpy)] or [Ru(bpy)3][PF6]2). Reductive quenching of the 3MLCT excited state of the photosensitiser by NEt3 or N(CH2CH2OH)3 (TEOA) generates PS•−, and subsequent intermolecular electron transfer to 1 produces the reduced anionic form of 1. Time-resolved infrared spectroscopy (TRIR) has been used to probe the intermediates throughout the reduction of 1 and subsequent photocatalytic H2 production from [HTEOA][BF4], which was monitored by gas chromatography. Two structural isomers of the reduced form of 1 (1a•− and 1b•−) were detected by Fourier transform infrared spectroscopy (FTIR) in both CH3CN and DMF (dimethylformamide), while only 1a•− was detected in CH2Cl2. Structures for these intermediates are proposed from the results of density functional theory calculations and FTIR spectroscopy. 1a•− is assigned to a similar structure to 1 with six terminal carbonyl ligands, while calculations suggest that in 1b•− two of the carbonyl groups bridge the Fe centres, consistent with the peak observed at 1714 cm−1 in the FTIR spectrum for 1b•− in CH3CN, assigned to a ν(CO) stretching vibration. The formation of 1a•− and 1b•− and the production of H2 was studied in CH3CN, DMF and CH2Cl2. Although the more catalytically active species (1a•− or 1b•−) could not be determined, photocatalysis was observed only in CH3CN and DMF

    Time courses of urinary creatinine excretion, measured creatinine clearance and estimated glomerular filtration rate over 30 days of ICU admission

    Get PDF
    Purpose: Baseline urinary creatinine excretion (UCE) is associated with ICU outcome, but its time course is not known. Materials and methods: We determined changes in UCE, plasma creatinine, measured creatinine clearance (mCC) and estimated glomerular filtration (eGFR) in patients with an ICU-stay 30d without acute kidney injury stage 3. The Cockcroft-Gault, MDRD (modification of diet in renal disease) and CKD-EPI (chronic kidney disease epidemiology collaboration) equations were used. Results: In 248 patients with 5143 UCEs hospital mortality was 24%. Over 30d, UCE absolutely decreased in male survivors and non-survivors and female survivors and nonsurvivors by 0.19, 0.16, 0.10 and 0.05 mmol/d/d (all P < 0.001). Relative decreases in UCE were similar in all four groups: 1.3, 1.4, 1.2 and 0.9%/d respectively. Over 30d, mCC remained unchanged, but eGFR rose by 31% (CKD-EPI) and 73% (MDRD) and creatinine clearance estimated by Cockcroft-Gault by 59% (all P < 0.001). Conclusions: Over 1 month of ICU stay, UCE declined by 1%/d which may correspond to an equivalent decline in muscle mass. These rates of UCE decrease were similar in survivors, non-survivors, males and females underscoring the intransigent nature of this process. In contrast to measured creatinine clearance, estimates of eGFR progressively rose during ICU stay. (c) 2020 Published by Elsevier Inc
    corecore