323 research outputs found

    Calculation of the Regularized Vacuum Energy in Cavity Field Theories

    Get PDF
    A novel technique based on Schwinger's proper time method is applied to the Casimir problem of the M.I.T. bag model. Calculations of the regularized vacuum energies of massless scalar and Dirac spinor fields confined to a static and spherical cavity are presented in a consistent manner. While our results agree partly with previous calculations based on asymptotic methods, the main advantage of our technique is that the numerical errors are under control. Interpreting the bag constant as a vacuum expectation value, we investigate potential cancellations of boundary divergences between the canonical energy and its bag constant counterpart in the fermionic case. It is found that such cancellations do not occur.Comment: 14 pages, 4 figures, accepted for publication in Eur.Phys.J.

    Vacuum structure of a modified MIT Bag

    Full text link
    An alternative to introducing and subsequently renormalizing classical parameters in the expression for the vacuum energy of the MIT bag for quarks is proposed in the massless case by appealing to the QCD trace anomaly and scale separation due to asymptotic freedom. The explicit inclusion of gluons implies an unrealistically low separation scale.Comment: 5 pages, 2 figure

    Radiation budget estimates over Africa and surrounding oceans: inter-annual comparisons

    Get PDF
    International audienceThree independent datasets of Radiation Budget at the top of the atmosphere (TOA) spanning two decades are compared: the Scanner Narrow Field of View data (from ERBE, ScaRaB, and CERES instruments, 1985–2005), the ERBS Nonscanner Wide Field of View data (1985–1998) and the simulated broadband fluxes from the International Satellite Cloud Climatology Project (ISCCP-FD, 1983–2004). The analysis concerns the shortwave (SW) reflected flux, the longwave (LW) emitted flux and the net flux at the Top Of the Atmosphere (TOA) over Africa and the surrounding oceans (45° S–45° N/60° W–60° E), a region particularly impacted by climate variability. For each month, local anomalies are computed with reference to the average over this large region, and their differences between the 2002–2005 and 1985–1989 periods are analysed. These anomalies are relative values and are mostly independent on the absolute observed trends (about 2.5 Wm-2 per decade) which may be affected by possible calibration drifts. Large inter-annual variations are observed locally. Over a part of the South East Atlantic (35°–10° S/10° W–10° E), including the marine low cloud area off Angola, there is a decrease of the yearly means of net flux estimated to 2.2, 3 and 6 Wm-2 respectively for the Scanner, Nonscanner and ISCPP-FD data. Over a narrow strip of the Sahel Zone, the net flux increases by about 5 Wm-2

    Hadron masses in cavity quantum chromodynamics to order αs2\alpha_s^2

    Full text link
    The non-divergent diagrams describing two-gluon exchange and annihilation between quarks and antiquarks are calculated in the Feynman gauge, based on quantum chromodynamics in a spherical cavity. Using the experimental NN, Δ\Delta, Ω\Omega, and ρ\rho masses to fit the free parameters of the M.I.T.\ bag model, the predicted states agree very well with the observed low-lying hadrons. As expected, the two-gluon annihilation graphs lift the degeneracy of the π\pi and η\eta, while the ρ\rho and ω\omega remain degenerate. Diagonalizing the ηη\eta - \eta' subspace Hamiltonian yields a very good value for the mass of the η\eta meson.Comment: 15 pages, 2 figure

    Decaying Sterile Neutrinos as a Heating Source in the Milky Way Center

    Full text link
    Recent Chandra and Newton observations indicate that there are two-temperature components (TT \sim 8 keV, 0.8 keV) of the diffuse x-rays emitted from deep inside the center of Milky Way. We show that this can be explained by the existence of sterile neutrinos, which decay to emit photons that can be bound-free absorbed by the isothermal hot gas particles in the center of Milky Way. This model can account for the two-temperature components naturally as well as the energy needed to maintain the \sim 8 keV temperature in the hot gas. The predicted sterile neutrino mass is between 16-18 keV.Comment: Accepted by MNRAS with minor correction

    Nonlinear evolution of dark matter and dark energy in the Chaplygin-gas cosmology

    Full text link
    The hypothesis that dark matter and dark energy are unified through the Chaplygin gas is reexamined. Using generalizations of the spherical model which incorporate effects of the acoustic horizon we show that an initially perturbative Chaplygin gas evolves into a mixed system containing cold dark matter-like gravitational condensate.Comment: 11 pages, 3 figures, substantial revision, title changed, content changed, added references, to appear in JCA

    Stable gravastars with generalised exteriors

    Full text link
    New spherically symmetric gravastar solutions, stable to radial perturbations, are found by utilising the construction of Visser and Wiltshire. The solutions possess an anti--de Sitter or de Sitter interior and a Schwarzschild--(anti)--de Sitter or Reissner--Nordstr\"{o}m exterior. We find a wide range of parameters which allow stable gravastar solutions, and present the different qualitative behaviours of the equation of state for these parameters.Comment: 14 pages, 11 figures, to appear in Classical and Quantum Gravit

    Peptidoglycan in obligate intracellular bacteria

    Get PDF
    Peptidoglycan is the predominant stress-bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted \u2018peptidoglycan-intermediate\u2019 organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan-negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan-intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan-like sacculus and/or division septum

    A connection between stress and development in the multicelular prokaryote Streptomyces coelicolor

    Get PDF
    Morphological changes leading to aerial mycelium formation and sporulation in the mycelial bacterium Streptomyces coelicolor rely on establishing distinct patterns of gene expression in separate regions of the colony. sH was identified previously as one of three paralogous sigma factors associated with stress responses in S. coelicolor. Here, we show that sigH and the upstream gene prsH (encoding a putative antisigma factor of sH) form an operon transcribed from two developmentally regulated promoters, sigHp1 and sigHp2. While sigHp1 activity is confined to the early phase of growth, transcription of sigHp2 is dramatically induced at the time of aerial hyphae formation. Localization of sigHp2 activity using a transcriptional fusion to the green fluorescent protein reporter gene (sigHp2–egfp) showed that sigHp2 transcription is spatially restricted to sporulating aerial hyphae in wild-type S. coelicolor. However, analysis of mutants unable to form aerial hyphae (bld mutants) showed that sigHp2 transcription and sH protein levels are dramatically upregulated in a bldD mutant, and that the sigHp2–egfp fusion was expressed ectopically in the substrate mycelium in the bldD background. Finally, a protein possessing sigHp2 promoter-binding activity was purified to homogeneity from crude mycelial extracts of S. coelicolor and shown to be BldD. The BldD binding site in the sigHp2 promoter was defined by DNase I footprinting. These data show that expression of sH is subject to temporal and spatial regulation during colony development, that this tissue-specific regulation is mediated directly by the developmental transcription factor BldD and suggest that stress and developmental programmes may be intimately connected in Streptomyces morphogenesis

    Gravastar Solutions with Continuous Pressures and Equation of State

    Full text link
    We study the gravitational vacuum star (gravastar) configuration as proposed by other authors in a model where the interior de Sitter spacetime segment is continuously extended to the exterior Schwarzschild spacetime. The multilayered structure in previous papers is replaced by a continuous stress-energy tensor at the price of introducing anisotropy in the (fluid) model of the gravastar. Either with an ansatz for the equation of state connecting the radial prp_r and tangential ptp_t pressure or with a calculated equation of state with non-homogeneous energy/fluid density, solutions are obtained which in all aspects satisfy the conditions expected for an anisotropic gravastar. Certain energy conditions have been shown to be obeyed and a polytropic equation of state has been derived. Stability of the solution with respect to possible axial perturbation is shown to hold.Comment: 19 pages, 9 figures. Latest version contains new and updated references along with some clarifying remarks in the stability analysi
    corecore