27 research outputs found

    Enhanced oxidation activity from modified ceria: MnOx-ceria, CrOx-ceria and Mg doped VOx-ceria

    Get PDF
    Ceria is an important component of catalysts for oxidation reactions that proceed through the Mars-van Krevelen mechanism, promoting activity. A paradigm example of this is the VOx–CeO2 system for oxidative dehydrogenation reactions, where vanadium oxide species are supported on ceria and a special synergy between them is behind the enhanced activity: reduction of the catalyst is promoted by ceria undergoing reduction. This leads to favourable oxygen vacancy formation and hydrogen adsorption energies—useful descriptors for the oxidation activity of VOx–CeO2 catalysts. In this paper, we examine if this promoting effect on ceria-based catalysts holds for other metal oxide modifiers and we investigate MnOn– and CrOn–CeO2(111) (n = 0 − 4) as examples. We show, combining density functional theory calculations and statistical thermodynamics that similarly to the vanadia modifier, the stable species in each case is MnO2– and CrO2–CeO2. Both show favourable energetics for oxygen vacancy formation and hydrogen adsorption, indicating that VO2–CeO2 is not the only system of this type that can have an enhanced activity for oxidation reactions. However, the mechanism involved in each case is different: CrO2–CeO2 shows similar properties to VO2–CeO2 with ceria reduction upon oxygen removal stabilising the 5+ oxidation state of Cr. In contrast, with MnO2–CeO2, Mn is preferentially reduced. Finally, a model system of VO2–Mg:CeO2 is explored that shows a synergy between VO2 modification and Mg doping. These results shed light on the factors involved in active oxidation catalysts based on supported metal oxides on ceria that should be taken into consideration in a rational design of such catalysts

    Facet-dependent stability of near-surface oxygen vacancies and excess charge localization at CeO2surfaces

    Get PDF
    To study the dependence of the relative stability of surface (V A) and subsurface (VB) oxygen vacancies with the crystal facet of CeO2, the reduced (100), (110) and (111) surfaces, with two different concentrations of vacancies, were investigated by means of density functional theory (DFT + U) calculations. The results show that the trend in the near-surface vacancy formation energies for comparable vacancy spacings, i.e. (110) < (100) < (111), does not follow the one in the surface stability of the facets, i.e. (111) < (110) < (100). The results also reveal that the preference of vacancies for surface or subsurface sites, as well as the preferred location of the associated Ce3+ polarons, are facet- and concentration-dependent. At the higher vacancy concentration, the V A is more stable than the V B at the (110) facet whereas at the (111), it is the other way around, and at the (100) facet, both the V A and the VB have similar stability. The stability of the V A vacancies, compared to that of the V B, is accentuated as the concentration decreases. Nearest neighbor polarons to the vacant sites are only observed for the less densely packed (110) and (100) facets. These findings are rationalized in terms of the packing density of the facets, the lattice relaxation effects induced by vacancy formation and the localization of the excess charge, as well as the repulsive Ce3+-Ce3+ interactions.Fil: Pérez Bailac, Patricia. Universidad Autónoma de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones Científicas; Españ

    Vibrational frequencies of CO bound to all three low-index cerium oxide surfaces: A consistent theoretical description of vacancy-induced changes using density functional theory

    Get PDF
    The facet-dependent adsorption of CO on oxidized and reduced CeO2_2 single crystal surfaces is reviewed, with emphasis on the effect of CO coverage and the ability of state-of-the-art quantum-mechanical methods to provide reliable energies and an accurate description of the IR vibrational frequency of CO. Comparison with detailed, high-resolution experimental infrared reflection absorption spectroscopy data obtained for single crystal samples allows the assignment of the different CO vibrational bands observed on all three low-index ceria surfaces. Good agreement is achieved with the hybrid density functional theory approach with the HSE06 functional and with saturation coverage. It is shown that CO is very sensitive to the structure of cerium oxide surfaces and to the presence of oxygen vacancies. The combined theoretical-experimental approach offers new opportunities for a better characterization of ceria nanoparticles and for unraveling changes occurring during reactions involving CO at higher pressures

    Oxygen-Vacancy Dynamics and Entanglement with Polaron Hopping at the Reduced CeO2 (111) Surface

    Get PDF
    The migration of oxygen vacancies (VO) in ceria-based systems is crucial to their functionality in applications. Yet, although the VO's structure and the distribution of the Ce3+ polarons at the CeO2(111) surface has received extensive attention, the dynamic behaviors of VO's and polarons are not fully understood. By combining density functional theory calculations and ab initio molecular dynamics simulations, we show that the movements of VO's and polarons exhibit very distinct entanglement characteristics within a temperature range of 300-900 K, and that the positions of the Ce3+ polarons play a key role in the VO migration. Long-distance vacancy migration occurs at moderate temperatures when the "suitable" Ce3+ distribution remains long enough to promote oxygen migration. This study provides microscopic insight into the interplay between the electronic and ionic charge transport in ceria that will be beneficial for the rational design of conductive ceria-based materials.Fil: Zhang, Dawei. Chinese Academy of Sciences. Shanghai Institute of Applied Physics ; ChinaFil: Han, Zhong Kang. Chinese Academy of Sciences. Shanghai Institute of Applied Physics ; China. Chinese Academy of Sciences; República de ChinaFil: Murgida, Gustavo Ezequiel. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones Científicas. Instituto de Catálisis y Petroleoquímica; EspañaFil: Gao, Yi. Chinese Academy of Sciences. Shanghai Institute of Applied Physics ; China. Chinese Academy of Sciences; República de Chin

    Nature of the Active Sites on Ni/CeO2Catalysts for Methane Conversions

    Get PDF
    Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO2(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO2(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH4 as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions.Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Mao, Zhongtian. University of Washington; Estados UnidosFil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; ArgentinaFil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; ArgentinaFil: Ganduglia Pirovano, M. Verónica. Universidad de Buenos Aires; ArgentinaFil: Campbell, Charles T.. University of Washington; Estados Unido

    Metastable precursors during the oxidation of the Ru(0001) surface

    Full text link
    Using density-functional theory, we predict that the oxidation of the Ru(0001) surface proceeds via the accumulation of sub-surface oxygen in two-dimensional islands between the first and second substrate layer. This leads locally to a decoupling of an O-Ru-O trilayer from the underlying metal. Continued oxidation results in the formation and stacking of more of these trilayers, which unfold into the RuO_2(110) rutile structure once a critical film thickness is exceeded. Along this oxidation pathway, we identify various metastable configurations. These are found to be rather close in energy, indicating a likely lively dynamics between them at elevated temperatures, which will affect the surface chemical and mechanical properties of the material.Comment: 11 pages including 9 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Metal-Support Interactions and C1 Chemistry: Transforming Pt-CeO2into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane

    Get PDF
    There is an ongoing search for materials which can accomplish the activation of two dangerous greenhouse gases like carbon dioxide and methane. In the area of C1 chemistry, the reaction between CO2 and CH4 to produce syngas (CO/H2), known as methane dry reforming (MDR), is attracting a lot of interest due to its green nature. On Pt(111), high temperatures must be used to activate the reactants, leading to a substantial deposition of carbon which makes this metal surface useless for the MDR process. In this study, we show that strong metal-support interactions present in Pt/CeO2(111) and Pt/CeO2 powders lead to systems which can bind CO2 and CH4 well at room temperature and are excellent and stable catalysts for the MDR process at moderate temperature (500 °C). The behavior of these systems was studied using a combination of in situ/operando methods (AP-XPS, XRD, and XAFS) which pointed to an active Pt-CeO2-x interface. In this interface, the oxide is far from being a passive spectator. It modifies the chemical properties of Pt, facilitating improved methane dissociation, and is directly involved in the adsorption and dissociation of CO2 making the MDR catalytic cycle possible. A comparison of the benefits gained by the use of an effective metal-oxide interface and those obtained by plain bimetallic bonding indicates that the former is much more important when optimizing the C1 chemistry associated with CO2 and CH4 conversion. The presence of elements with a different chemical nature at the metal-oxide interface opens the possibility for truly cooperative interactions in the activation of C-O and C-H bonds.Fil: Zhang, Feng. State University of New York. Stony Brook University; Estados UnidosFil: Gutiérrez, Ramón A.. Universidad Central de Venezuela; VenezuelaFil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Liu, Zongyuan. Brookhaven National Laboratory; Estados UnidosFil: Rui, Ning. Brookhaven National Laboratory; Estados UnidosFil: Wu, Tianpin. Argonne National Laboratory; Estados UnidosFil: Ramírez, Pedro J.. Zoneca-cenex; México. Universidad Central de Venezuela; VenezuelaFil: Xu, Wenqian. Argonne National Laboratory; Estados UnidosFil: Idriss, Hicham. King Abdullah University of Science and Technology; Arabia SauditaFil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones Científicas; EspañaFil: Senanayake, Sanjaya D.. Brookhaven National Laboratory; Estados UnidosFil: Rodriguez, José A.. Brookhaven National Laboratory; Estados Unidos. State University of New York. Stony Brook University; Estados Unido
    corecore