7 research outputs found

    Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a progressive multisystemic disease that increases significantly cardiovascular morbidity and mortality. It is associated with obesity, insulin resistance, beta-cell dysfunction, and hyperglucagonemia, the combination of which typically leads to hyperglycemia. Incretin-based treatment modalities, and in particular glucagon-like peptide 1 (GLP-1) receptor agonists, are able to successfully counteract several of the underlying pathophysiological abnormalities of T2DM. The pancreatic effects of GLP-1 receptor agonists include glucose-lowering effects by stimulating insulin secretion and inhibiting glucagon release in a strictly glucose-dependent manner, increased beta-cell proliferation, and decreased beta-cell apoptosis. GLP-1 receptors are widely expressed throughout human body; thus, GLP-1-based therapies exert pleiotropic and multisystemic effects that extend far beyond pancreatic islets. A large body of experimental and clinical data have suggested a considerable protective role of GLP-1 analogs in the cardiovascular system (decreased blood pressure, improved endothelial and myocardial function, functional recovery of failing and ischemic heart, arterial vasodilatation), kidneys (increased diuresis and natriuresis), gastrointestinal tract (delayed gastric emptying, reduced gastric acid secretion), and central nervous system (appetite suppression, neuroprotective properties). The pharmacologic use of GLP-1 receptor agonists has been shown to reduce bodyweight and systolic blood pressure, and significantly improve glycemic control and lipid profile. Interestingly, weight reduction induced by GLP-1 analogs reflects mainly loss of abdominal visceral fat. The critical issue of whether the emerging positive cardiometabolic effects of GLP-1 analogs can be translated into better clinical outcomes for diabetic patients in terms of long-term hard endpoints, such as cardiovascular morbidity and mortality, remains to be elucidated with prospective, large-scale clinical trials

    A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI

    Get PDF

    Human Serum Albumin and p53-Activating Peptide Fusion Protein Is Able to Promote Apoptosis and Deliver Fatty Acid-Modified Molecules

    Get PDF
    Therapeutic peptides offer a high degree of specificity, potency, and low toxicity; making them promising candidates for cancer therapy. Despite these advantages, a number of hurdles, such as poor serum stability and inefficient cellular penetration, must be overcome. Fusing a therapeutic peptide to human serum albumin (HSA) is a common approach to extend the serum stability of a peptide that binds to extracellular receptors. However, no study has shown that this approach can be applied to target intracellular proteins. Here we demonstrate the feasibility of using a recombinant human serum albumin (rHSA) fusion protein to simultaneously deliver two types of molecules: a peptide capable of binding an intracellular target, as well as fatty acid (FA)-modified FITC (FA-FITC). Two peptides reported to disrupt the intracellular p53 and MDM2/MDMX interaction were fused to the C-terminal of HSA. Cellular and biochemical studies indicate that rHSA fusion proteins were efficiently taken up by SJSA-1 cells and retained MDM2- and MDMX-binding activity. By inducing the accumulation of p53, both fusion proteins promoted efficient cytotoxicity in SJSA-1 cells via caspase activation. Long chain fatty acid (LCFA) transportation is an essential endogenous function of HSA. This study also demonstrates that rHSA fusion proteins formed highly stable complexes with FA-FITC via non-covalent interactions. FA-FITC complexed with HSA could be internalized efficiently and rHSA-P53i and rHSA-PMI retained apoptotic activity as complex components. It is expected that such an approach can ultimately be used to facilitate intracellular delivery of two anticancer therapeutics, each with distinct but complimentary mechanisms, to achieve synergistic efficacy

    G protein-coupled receptors as targets for anti-diabetic therapeutics

    No full text
    corecore