239 research outputs found

    El sincrotró ALBA, una eina de futur

    Get PDF
    Els sincrotrons, com l'ALBA, són un tipus d'accelerador de partícules que tenen un gran nombre d'aplicacions en gran diversitat de camps. Són també una de les inversions actualment més importants en el món de la física ja que permeten -i seguiran permetent en un futur proper- mostrar a l'ésser humà tot allò que el seu ull no és capaç de veur

    Building a Socio-technical Perspective of Community Resilience with a Semiotic Approach

    Get PDF
    Situated in the diversity and adversity of real-life contexts facing crisis situations, this research aims at boosting the resilience process within communities supported by digital and social technology. In this paper, eight community leaders in different parts of the world are invited to express their issues and wishes regarding the support of technology to face social challenges. Methods and artefacts based on the Organisational Semiotics (OS) and the Socially-Aware computing have been applied to analyse and consolidate this data. By providing both a systemic view of the problem and also leading to the identification of requirements, the analysis evidences some benefits of the OS-based approach to consolidate perspectives from different real-life scenarios towards building a socio-technical solution

    The assessment of information technology maturity in emergency response organizations

    Full text link
    [EN] In emergency response organizations, information technologies are not adequately explored. Sometimes, the mere adoption of new information technologies is not productive, as their efficient use depends on other interrelated technologies and the environment where they are installed. This work describes a model to help organizations understand their capability in respect to the adoption of these technologies. The model also helps the performing of the evaluation from different perspectives, making it suitable to collaborative evaluation. Using the proposed model, an organization can measure its maturity level in different aspects of the evaluation and guide the investment on its capabilities. Part of the model has been developed for emergency response organizations and the information technology dimension of the model has been applied to two fire department installations.Marcos R. S. Borges was partially supported by grants No. 560223/2010-2 and 480461/2009-0 from CNPq (Brazil). Work of José H. Canós is partially funded by the Spanish Ministerio. de Educación y Ciencia (MEC) under grant TIPEX (TIN2010–19859-C03-03). The cooperation between the Brazilian and the Spanish research groups was partially sponsored by the CAPES/MECD Cooperation Program, Project #169/ PHB2007-0064-PC.Santos, RS.; Borges, MRS.; Canos Cerda, JH.; Gomes, JO. (2011). The assessment of information technology maturity in emergency response organizations. Group Decision and Negotiation. 20(5):593-613. doi:10.1007/s10726-011-9232-zS593613205Bigley G, Roberts KH (2001) The incident command system: high reliability organizing for complex and volatile task environments. Acad Manag J 44(6): 1281–1299Chinowsky P, Molenaar K, Realph A (2007) Learning organizations in construction. J Manag Eng 23(1): 27–34Diniz VB, Borges MRS, Gomes JO, Canós JH (2008) Decision making support in emergency response. In: Encyclopedia of decision making, Information Science Reference (an imprint of IGI Global), New York, pp 184–191Dörner R, Grimm P, Seiler C (2001) ETOILE—an environment for team, organizational and individual learning. CG Top 13(3): 5–6Dykstra E (2003) Concept paper: toward an international system model in emergency management. In: Proceedings of toward an international system model in emergency management, Public Entity Risk InstituteFederal Emergency Management Agency (FEMA) (1998) Emergency management guide for business and industry: a step-by-step approach to emergency planning, response and recovery for companies of all sizesGu Q, Mendonça D (2005) Patterns of group information seeking in a simulated emergency response environment. In: Proceedings of the 2nd international ISCRAM conference, Brussels, BelgiumHale J (1997) A layered communication architecture for the support of crisis response. J Manag Inf Syst 14(1): 235–255King W, Teo T (1997) Integration between business planning and information systems planning: validating a stage hypothesis. Decis Sci 28(2): 279–307Lachner J, Hellwagner H (2008) Information and communication systems for mobile emergency response. Lecture notes in business information processing, vol 5. pp 213–224Lavoie D, Culbert A (1978) Stages in organization and development. Human Relat 31(5): 417–438Lindel MK, Prater C, Perry RW (2007) Emergency management. Wiley, New YorkLlavador M, Letelier P, Penadés MC, Borges MRS, Solís C (2006) Precise yet flexible specification of emergency resolution procedures. In: Proceedings of the information systems for crisis response and management (ISCRAM), pp 110–120Meissner A, Wang Z, Putz W, Grimmer J (2006) MIKoBOS: a mobile information and communication system for emergency response. In: Proceedings of the 3rd international ISCRAM conference, Newark, New JerseyNonaka I, Takeuchi H (1995) The knowledge creating company: how Japanese companies create the dynamics of innovation. Oxford University Press, OxfordOchoa S, Neyem A, Pino JA, Borges MRS (2007) Supporting group decision making and coordination in urban disasters relief efforts. J Decis Syst 16(2): 143–172Paton D, Flin R (1999) Disaster stress: an emergency management perspective. Disaster Prev Manag 8(4): 261–267Paulk MC, Weber C, Curtis B, Chrissis M (1995) The capability maturity model: guidelines for improving the software process. Addison-Wesley, ReadingQuarantelli EL (1997) Problematical aspects of the information/communication revolution for disaster planning and research: ten non-technical issues and questions. Disaster Prev Manag 6(2): 94–106Santos RS, Borges MRS, Gomes JO, Canós JH (2008) Maturity levels of information technologies in emergency response organizations. In: Proceedings of the international workshop on groupware, Omaha, Nebraska, USA. Groupware: design, implementation and use. Lecture notes in computer science, vol 5411. Springer, Berlin, pp 135–150Schoenharl T, Szabo G, Madey G, Barabasi AL (2006) WIPER: a multi-agent system for emergency response. In: Proceedings of the 3rd international ISCRAM conference, Newark, New JerseyTuroff M (2002) Past and future emergency response information systems. Commun ACM 45(4): 29–33Turoff M, Chumer M, Hiltz R, Clasher R, Alles M, Vasarhelyi M, Kogan A (2004a) Assuring homeland security: continuous monitoring, control and assurance of emergency preparedness. J Inf Technol Theor Appl (JITTA) 6(3): 1–24Turoff M, Chumer M, Vande Walle B, Yao X (2004b) The design of a dynamic emergency response management information system (DERMIS). J Inf Technol Theor Appl (JITTA) 5(4): 1–35Van der Lee MDE, Van Vugt M (2004) IMI—An information system for effective multidisciplinary incident management. In: Proceedings of the 1st international ISCRAM conference, Brussels, BelgiumYuan Y, Deltor B (2005) Intelligent mobile crisis response systems. Commun ACM 28(2): 95–98Zimmerman R, Restrepo CE (2006) Information technology (IT) and critical infrastructure interdependencies for emergency response. In: Proceedings of the 3rd international ISCRAM conference, Newark, New Jerse

    Teaching upper level computer science courses via virtual classroom and video : course reports by faculty

    Get PDF
    New Jersey Institute of Technology is the grateful recipient of a generous grant from the Alfred P. Sloan Foundation which has enabled it to explore the use of asynchronous learning networks to create and deliver an entire undergraduate degree program in computer and information science. Each of these courses uses some amount of lecture-type material delivered via videotape. These materials are usually available to students in three different ways: by viewing broadcasts on a New Jersey cable station, by renting the set of videotapes, or by viewing in a special room in the library. Videotapes for distance learning are not new and are not, in themselves, a very effective means of delivery. The innovative part of this project is the Virtual Classroomâ„¢ which is a specially tailored set of features embedded in New Jersey Institute of Technology\u27s computer conferencing system, EIES (Electronic Information Exchange System). This makes possible a rich interchange and collaboration among students and faculty as they discuss and work through the problems and concepts in a course. As of the spring of 1995, both the B.A.I.S and the B.S.C.S. are available to distance and oncampus students. Teaching in a Virtual Classroom mixed with other media (such as video or CD ROM) is not simple however. The purpose of the enclosed descriptions of experiences by faculty members is to familiarize prospective teachers using this media mix in the future with both some ideas for how to organize their online activities, and knowledge of problems that have been encountered. The faculty members were given a suggested outline of topics to include in their reports, but otherwise were free to include whatever they thought would be of most use to other faculty members in the future, teaching the same or similar courses. Those who are interested in learning more about teaching and learning in ALN environments are referred to two book-length treatments: Starr Roxanne Hiltz, The Virtual Classroom: Learning Without Limits via Computer Networks (Ablex, Norwood NJ, 1994); and Linda Harasim, Starr Roxanne Hiltz, Lucio Teles and Murray Turoff, Learning Networks: A Field Guide to Teaching and Learning Online (MIT Press, 1995

    Assuring Homeland Security: Continuous Monitoring, Control and Assurance of Emergency Preparedness

    Get PDF
    This paper examines the potential relationships of Continuous Auditing and Emergency Preparedness to the design, development, and implementation of Emergency Response Management Information Systems (ERMIS). It develops an argument for the integration of emergency response processes and continuous decision process auditing requirements into the system development life cycle of an organization wide ERMIS

    EIES 2 : a distributed architecture for supporting group work

    Get PDF
    The Computerized Conferencing Center (CCCC) at New Jersey Institute of Technology (NJIT) has been researching on-line group communications for 17 years by developing and studying tools to advance the collective intelligence . The Electronic Information Exchange System 2 (EIES2) provides a research, development and operational environment for distributed computer supported cooperative work (CSCW) systems. The EIES 2 distributed Smalltalk processor provides for rapid prototyping and implementation of muti-media CSCW facilities in the network environment. The Smalltalk support of the object model, and meta-language properties make it ideally suited for incremental development CSCW applications. The EIES2 communication environment supports a decentralized network architecture. Modern standards are used in the implementation of data structures, communication interfaces and database. The EIES2 application layer protocols support use ASN.1 data representation to access to an object-oriented distributed database via X.ROS remote operation services. EIES2 can serve as a foundation on which group work systems may be built and defines protocols that can allow them to inter-operate. An initial system presents a powerful metaphor of conferences and activities which provides an extensible framework upon which to add group work applications. Work to date has provided structures for information exchange, inquiry networking, information filtering, the on-line virtual classroom, and group decision support. This paper presents the system architecture model used for EIES2 and describes the implementation and current applications

    Developing Crisis Training Software for Local Governments – From User Needs to Generic Requirements

    Get PDF
    In this paper we analyze and present the generic requirements identified for a software aiming at supporting crisis management training in local governments. The generic requirements are divided into overall requirements, requirements connected to the trainer’s role and requirements connected to the trainee’s role. Moreover, the requirements are mapped to problems as well as opportunities. Finally, we present examples of elaborations of the addressed requirements based on software design considerations. In our work we applied a design science approach and the artifact presented in this paper is a list of generic requirement. The presented requirements and the systems development process used, provide guidelines for systems analysts and developers in future systems development projects aiming at constructing new software for crisis management training
    • …
    corecore