
New Jersey Institute of Technology
Digital Commons @ NJIT
Computerized Conferencing and Communications
Center Reports Special Collections

1-1-1992

EIES 2 : a distributed architecture for supporting
group work
Computerized Conferencing & Communications Center

James Whitescarver

Robert M. Czech

Sreenivas Reddy

Ajaz R. Rana

See next page for additional authors

Follow this and additional works at: https://digitalcommons.njit.edu/ccccreports

Part of the Digital Communications and Networking Commons

This Report is brought to you for free and open access by the Special Collections at Digital Commons @ NJIT. It has been accepted for inclusion in
Computerized Conferencing and Communications Center Reports by an authorized administrator of Digital Commons @ NJIT. For more
information, please contact digitalcommons@njit.edu.

Recommended Citation
Computerized Conferencing & Communications Center; Whitescarver, James; Czech, Robert M.; Reddy, Sreenivas; Rana, Ajaz R.;
and Turoff, Murray, "EIES 2 : a distributed architecture for supporting group work" (1992). Computerized Conferencing and
Communications Center Reports. 28.
https://digitalcommons.njit.edu/ccccreports/28

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Jersey Institute of Technology (NJIT)

https://core.ac.uk/display/232277555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fccccreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/ccccreports?utm_source=digitalcommons.njit.edu%2Fccccreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/ccccreports?utm_source=digitalcommons.njit.edu%2Fccccreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/specialcollections?utm_source=digitalcommons.njit.edu%2Fccccreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/ccccreports?utm_source=digitalcommons.njit.edu%2Fccccreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.njit.edu%2Fccccreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/ccccreports/28?utm_source=digitalcommons.njit.edu%2Fccccreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Authors
Computerized Conferencing & Communications Center, James Whitescarver, Robert M. Czech, Sreenivas
Reddy, Ajaz R. Rana, and Murray Turoff

This report is available at Digital Commons @ NJIT: https://digitalcommons.njit.edu/ccccreports/28

https://digitalcommons.njit.edu/ccccreports/28?utm_source=digitalcommons.njit.edu%2Fccccreports%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages

EIES 2 - A DISTRIBUTED ARCHITECTURE FOR
SUPPORTING GROUP WORK

James Whitescarver

Robert M. Czech

Sreenivas Reddy

Ajaz R. Rana

Murray Turoff

DRAFT

January 1, 1992

New Jersey Institute of Technology

ABSTRACT

The Computerized Conferencing Center (CCCC) at New Jersey
Institute of Technology (NJIT) has been researching on-line
group communications for 17 years by developing and studying
tools to advance the "collective intelligence". The
Electronic Information Exchange System 2 (EIES2) provides a
research, development and operational environment for
distributed computer supported cooperative work (CSCW)
systems. The EIES 2 distributed Smalltalk processor provides
for rapid prototyping and implementation of muti-media CSCW
facilities in the network environment. The Smalltalk support
of the object model, and meta-language properties make it
ideally suited for incremental development CSCW
applications. The EIES2 communication environment supports a
decentralized network architecture. 	Modern standards are
used in the implementation of data structures, communication
interfaces and database. The EIES2 application layer
protocols support use ASN.1 data representation to access to
an object-oriented distributed database via X.ROS remote
operation services. EIES2 can serve as a foundation on
which group work systems may be built and defines protocols
that can allow them to inter-operate. An initial system
presents a powerful metaphor of conferences and activities
which provides an extensible framework upon which to add
group work applications. Work to date has provided
structures for information exchange, inquiry networking,
information filtering, the on-line virtual classroom, and
group decision support. This paper presents the system
architecture model used for EIES2 and describes the
implementation and current applications.

- 2 -

CONTENTS

1. An Architectural Model for Group Work 	3
1.1 The Organization 	3
1.2 Network Environment 	3
1.3 The OBJECT Model 	4
1.4 	Decoupled User Interface 	4
1.5 Standards 	 5

2. EIES2 IMPLEMENTATION 	5
2.1 EIES2 OVERVIEW 	5
2.2 SYSTEM ARCHITECTURE 	6

3. EIES2 SMALLTALK OVERVIEW 	9
3.1 Meta Language Properties 	 10
3.2 Conceptual Programming in Smalltalk 	 11
3.3 	Leverage in Smalltalk 	 11
3.4 Distributed Operation 	 12
3.5 OBJECT CLASSES FOR CSCW 	 12
3.6 EIES2 Smalltalk Example 	 13

4. CURRENT EIES2 STATUS 	 18
4.1 MAIL 	 19
4.2 CONFERENCES 	 19
4.3 FORMS 	 19
4.4 ATTACHMENTS 	 20
4.5 ACTIVITES 	 20
4.6 KEYS 	 20
4.7 FILTERS 	 21
4.8 NOTIFICATIONS 	 21
4.9 TALK 	 21
4.10 Distributed functionality 	 21

5. Summary 	 22

References 	 25

- 3 -

1. An Architectural Model for Group Work

1.1 The Organization

A typical organization consists of individuals performing
different functions, using various information and physical
resources. The activities performed by the individuals, and
the flow of information combine to generate activities of
the organization. Activities in even the most highly
structured organizations are subject to change. A top down
structured definition of the activities has a very limited
life expectancy. An analytical definition of all the
activities and their relationships may be impractical or
impossible. An alternative is synthetic definition of
organizational activities allows individual activities to be
defined in terms of the information objects they involve and
the roles of individuals taking part in the process.
Contrary to current wisdom in software engineering, when it
comes to collaborative communications applications, a bottom
up design process is more appropriate. At the same time,
there should be a consistent organized framework within the
on-line environment where all the various on-line activities
may be handled with a common interface.

1.2 Network Environment

The participants in organizational processes may be widely
distributed. Inter-organizational activities are even more
distributed. Main-frame computers, departmental mini-
computers and desk top personal computers must work together
in a coordinated manner to provide a "connected"
organizational support environment. Applications should
access remote services as needed. The network should be
transparent to the user.

Data objects may be anywhere on the network. Information
must be shared between applications. Furthermore, a
coordinated and distributed data base providing controlled
access to organizational information is required.

- 4 -

1.3 The OBJECT Model

The object model supports synthetic definition of
applications in terms of objects and messages they can
receive. An object receives a message and performs a method
based on the message contents and the class of the object.
The definition of organizational activities in this way not
only allows the activities to be defined independently, but
also allows them to be changed independent of the rest of
the system. Procedural definitions are not excluded by the
use of the object model, thus, allowing both highly
structured and flexible activity relationships to be
defined. Inheritance is a property of object-oriented
systems that allows new object classes to inherit
functionality from existing classes. This greatly simplifies
development in that it is only necessary to define how a new
class differs from it's closest related existing object
class.

1.4 Decoupled User Interface

As the group work environment evolves, the features and
facilities will change as will the user interfaces. User
interfaces may be as numerous as the different individual
views of the organization. Users must not be subjected to
unnecessary changes in the interface. A single consistent
interface should provide access to all group work activities
but the interface need not be the same for all user
participating in a group process. The functions of the
application and the user interface should be maintained
independently. The object model will support such
independent definitions of function and the user interface
beautifully. This separation is essential to support the
differing user views and the evolutionary nature of CSCW
implementation. /* Ultimately the user drives the evolution
of the CSCW environment. Individual productivity is
increased when the computer performs tasks for the benefit
of the individual. In an environment that supports decoupled
user interface development, the user agent provides the
mechanisms to perform the functions on the users behalf. In
some cases, the task may be fully automated and eliminate
the user interface entirely. Otherwise, the user agent
provides the interface to the user for the desired
functions. Advanced user programming facilities for the user
agent are required At minimum, user agent programs should be

- 5 -

user readable[1] so that users may understand and validate
that the functions acting on their behalf agree with their
desires. */

1.5 Standards

Although standards are not the only way to solve inter-
operability problems, standards are an effective means of
minimizing inter-operability problems. Instead of building
an interface to each pair of systems, inter-operability is
enhanced if each system can support a standard interface.

ISO ASN.1 CCITT ASN.1[2] provides a notation and machine
independent format for structured data to be exchanged
between systems. This abstract syntax notation is then used
to specify the protocol units for virtually all the new
international application layer standards. X.ROS defines a
protocol for remote operation services.

The support of these modern standards is a basic requirement
for future office information systems. New standards are
needed to fully support group work applications. The EIES2
protocols represent a general mechanism for operations on
remote objects which allows the implementation of
distributed group work applications[3].

2. EIES2 IMPLEMENTATION

2.1 EIES2 OVERVIEW

The Electronic Information Exchange System II (EIES2)
provides an integrated collection of tools for defining and
operating computer-supported cooperative work (CSCW)
systems. 	Facilities are provided to tailor group
communication activities and user interfaces in a network
environment. Standard application layer protocols for remote
operations are used to support a distributed database of
communication objects in an arbitrary network of application
entities (AEs).

A high-level tool, the Communications Language Processor
(CLP), is provided to define the protocol data units (PDUs)
for existing, and future standards. The CLP uses standard
abstract syntax notation (ASN.1) as defined by the ISO and

- 6 -

CCITT. This standard has been applied to define virtually
all the new application layer standards.

EIES2 employs the X.ROS application layer protocols for
remote operations. The X.ROS remote operations protocol is
also achieving a high degree of acceptance as a new
application layer standard. The EIES2 protocols provide an
extremely general base, employing the existing standards as
much as is practical, upon which future CSCW standards may
be built.

EIES2 provides its own distributed Smalltalk environment for
CSCW application development. This maps well to the network
environment of CSCW, and provides for a high degree of
security. The object model is extremely well suited to CSCW
development.

2.2 SYSTEM ARCHITECTURE

2.2.1 COMMUNICATIONS _PROCESSOR_(CP)

The Communications Processor is an object-oriented, stack-
based bytecode pseudo-machine. The CP is modeled after
Smalltalk-80, developed at XEROX PARC. It is an extended
version of the Smalltalk bytecode interpreter defined in [4]
(also known as "The Blue Book").

2.2.2 EIES2_NETWORK_INTERFACE
The Network Interface connects EIES2 compatible Application
Entities (AE's) allowing distributed and decentralized
processing. AE's may run on the same CP, and CPs may run as
separate processes on the same machine or on separate
machines, either tightly or loosely coupled. 	The type of
connection is transparent to the application.

The communication between one or more AE's is handled by two
systems, the Remote Operations Server (ROS) and the Reliable
Transfer Server (RTS). These facilities are extremely
important to the EIES2 distributed system architecture,

* Smalltalk-80 is a trademark of XEROX Corp.

- 7 -

since one process executed by an AE may invoke several
remote messages, each of which would be executed by other
remote AE's thus "distributing" the original task.

In addition to providing its own ROS, RTS, and support for
UNIX System V interprocess communications, EIES2 interfaces
to Northrop ISODE to provide common application service
element (ISO 8850), presentation (ISO 8823), session (ISO
8327/CCITT X.225), and transport (ISO 8073/CCITT x.224)
services over CCITT X.25 and ARPA TCP/IP networks.

2.2.3 EIES_2_DATA_MANAGEMENT_SYSTEM
The EIES II Data Management System (DMS) provides a
structured virtual object memory for the Smalltalk bytecode
interpreter used in the Communications Processor (CP).
Provisions are made for operations performed on entire
objects or on the internal structure of an object.
Operations may be performed on objects in memory, on linear
disk segments or on disk indexes. 	Data is stored and
defined using the ASN.1 international standards. Object
size is limited only by storage capacity.

The CP operates on both local and remote objects. 	If a
remote object is to be used, the Remote Operations Server
(ROS) is invoked.

2.2.4 OPERATING_ENVIRONMENT_INTERFACE
The operating environment interface provides an interface to
the local system. 	It provides access to local files and
devices, including the system clock, interprocess
communications, semaphores, and operating system commands.

The initial environments supported are UNIX* compatible
systems.

The operating environment interface is implemented using C
library routines. 	The resulting EIES2 virtual operating
environment interface isolates system dependencies from all

* Trademark of AT&T

- 8 -

other system components.

2.2.5 USER_INTERFACE_FACILITIES
The user interface connects the user to one or more
application entities AE's. It provides facilities to enter,
select, display and update EIES2 objects. It provides access
to all functions of the communication processor by using the
Smalltalk language.

The terminal is modeled as a multimedia device supporting
many virtual interfaces. 	High-level interface functions
allow the support of terminals with radically different
physical characteristics.

The text facility provides simple document formatting (ODA+
is planned), full screen operations, and pointer-structured
text operations. A dumb terminal interface provides a line-
oriented interaction and provides complete terminal
independence. The type of terminal used is transparent to
the application program.

2.2.5.1 THE_FORMS_PROCESSOR_(FP) 	The 	ability 	to
communicate with forms rather than simple text is extremely
useful in the CSCW environment. A form represents an
implementation of structured messages as described by Malone
[5]. In the AMIGO Model the EIES2 form structure represents
a Message Type in the context of Activities defined for
group communications . A form can also be "attached" to a
message or to a conference comment. When the user views the
incoming message or the comment, he also will be prompted by
the system to fill out the form. When the user completes
the form, the information carried by the form will be
returned to the sender or other activity agent.

2.2.5.2 MENUS The Menu facility provides for horizontal or
vertical pop-up menus. Items may be selected by number,
letter, and by cursor control.

2.2.5.3 WINDOWS The window sub-system provides device
independent support for terminal input and output. The
Window subsystem also provides multiple pop-up windows and
maintains an answer- ahead buffer. 	Controls indicating
exception situations during terminal I/O operations are
maintained and can be accessed by any upper level
subsystems. These controls interface with the help

- 9 -

processor, the command processor, and the CP to support
consistent input processing.

2.2.6 EIES2_DISTRIBUTED_SMALLTALK
The communication processor is data-driven, based on the
database object and method definitions. The processing done
by a particular CP is determined solely by the messages
received by the objects local to that CP. Network load can
be balanced simply by migrating objects between CPs. EIES2
provides its own distributed Smalltalk* environment for CSCW
application development. Smalltalk provides a message-based
architecture that is highly suited to the CSCW environment.
In the Smalltalk object model, objects receive messages and
perform methods based on the class of the receiver. 	This
conforms well to the network environment of CSCW, and
additionally provides a high degree of security. /* In
addition, Smalltalk has excellent meta-language properties.
Object classes and methods define the statements that are
valid for the objects. 	As higher-level capabilities are
defined, so are higher level statements. 	This effectively
elevates the language from the level of the machine to the
level of the application. */ The environment is well suited
to rapid prototyping of CSCW interfaces, implementation of
new applications, and provides for end user and group
tailoring of the CSCW environment. User agent programming
provides for the automation of repetitive user functions.
Neither the user nor the application developer need be aware
of where the object is located on the network.

3. EIES2 SMALLTALK OVERVIEW

Just like functional and logical languages were associated
with the development of a particular language (like LISP and
PROLOG respectfully), Object oriented programming owes a lot
to the development of Smalltalk. Like some of the macro
languages which were associated with particular constructs
(LISP was associated with lists, TRAC with strings and FORTH
with words) Smalltalk is associated with Objects (actually

* Trademark of Xerox Corp.

- 10 -

along with messages). The single construct in the Smalltalk
language is the message send-- sending a message to an
object. Smalltalk belongs to a small class of single
construct languages. These languages support a high degree
of programming leverage. Enforcement of the object model
and superior meta-language capabilities make it ideal for
evolutionary programming environments.

Anything in Smalltalk is an object and this ranges from an
integer constant to a computational process. Smalltalk is a
simple language, but it uses unconventional terminology and
it differs conceptually from conventional programming
languages.

In the Smalltalk object model, objects receive messages and
perform methods based on the class of the receiver.

For example:

object message.

is a legal Smalltalk statement which sends the message,
"message", to the object, "object".

In the above example, the class definition for the class
that "object" belongs to, must have the message, "message"
defined, or an error, "message not understood" results. The
set of messages that an object class understands is called
the "protocol" for the class.

This model supports incremental software development with
excellent data security and protection. 	Systems are
developed by defining the behavior of objects independent
from the rest of the system. Each object class definition
completely defines how the objects of that class can be
"legally" manipulated. 	There is no mechanism in Smalltalk
to access objects except by methods defined for its class.

3.1 Meta Language Properties

Smalltalk has excellent meta-language properties. 	Object
classes and methods define the language statements that are
valid for the objects. 	As higher-level capabilities are
defined, so are higher level statements. This effectively

- 11 -

elevates the language from the level of the machine to the
level of the application.

Although Smalltalk itself, is a very simple language, each
Smalltalk application defines a specialized very high level
language tailored for that application. 	The capabilities
thus defined are added to the arsenal of functionality
available to the system developer in the Smalltalk
environment.

Our sample statement "object message." becomes part of the
language if and only if we define that message for the
object. The definition of application oriented messages
defines the language of the application-- Smalltalk style.

3.2 Conceptual Programming in Smalltalk

Smalltalk methods operate on "untyped" data. 	This means
that the programmer need not be aware of what kinds of data
the methods will be used to manipulate in the future. 	The
methods developed define "conceptual" algorithms that can
manipulate any kind of data. 	This further enhances the
"tool building" properties of the language.

A sort algorithm, for example, can sort any kind of objects,
as long as the messages send the objects are supported, e.g.
compare messages.

3.3 Leverage in Smalltalk

Smalltalk object classes are defined in a hierarchy that
allows objects to inherit properties from existing classes.
This allows programmers to define new object classes by only
specifying how they differ from similar existing classes
rather than defining all the properties of object classes
from scratch.

The hierarchy of classes, is defined by specifying the
"super class" in each new class definition. The new class
inherits all the variables and messages defined for the
super class.

- 12 -

3.4 Distributed Operation

Most Smalltalk environments have been used for individual
rather than group applications. They have a separate
database of objects for each user and cannot be easily
applied to group support applications. The database is
"transient" memory in main memory that only becomes
permanent if the memory "image" is stored on disk for later
reuse.

The EIES2 distributed Smalltalk takes advantage of the
message base model by supporting a distributed database of
persistent objects shared among all communicating EIES2
processes. 	Messages to remote objects are literally sent
across the network by remote operations (X.410).

The programmer does not need to be aware of where objects
are on the network. The same program will work regardless
of the location of the data.

A technique called "lazy execution" maximizes the overlap
(parallelism) of processing over the network to minimize
response time. Because Smalltalk methods represent high
level application specific operations, communications over
the network is minimal compared with remote data access or
remote window management protocols. The distribution of
processing is controlled by the location of the objects.

This environment has to potential to support a virtually
unlimited size user community simply by adding processors to
the network.

3.5 OBJECT CLASSES FOR CSCW

3.5.1 Communication_Objects
In addition to the standard Smalltalk-80 classes and
methods, EIES2 provides support for the Class
CommunicationObject to support CSCW. A communication object
is responsible for controlling access to objects in a
network environment. The protocol includes methods to
assign and test roles in the hierarchy of communication
objects. Subclasses include User, View, System, Item, and
all other classes of objects accessed via loosely coupled
links on the CSCW network.

- 13 -

3.5.2 View
A View represents a very general class of objects for CSCW.
In the simple case, a View is a list of one or more
communication objects. Views also support waiting versus
accepted items, memberships, indexing and sub-views. The
protocol for Views includes methods for submission and
delivery of communication objects, changing membership and
roles, accessing waiting or accepted objects, and obtaining
display information in an one line list format, four line
scan format, or full view format. Views are used to support
mailboxes, conferences, queues, etc. and to control access
to all Items on EIES2.

3.5.3 Item
An item is itself a sub-class of View, since it may have a
list of replies or sub-items associated with it. Items
contain Texts and optional Attachments.

3.5.4 UserAgent
An object in the UserAgent class provides a user interface
to the functions of the CSCW environment. It contains a set
of method blocks corresponding to each state of the user
agent as well as the current state and context of the user.
Methods support standardized Terminal and Window facilities,
trap handling, state changing, and application specific
functions.

3.5.5 System_Classes
The RemoteObject class supports operation across user,
database, application, and network boundaries. The Result
class support lazy process execution to maximize concurrency
and provide additional concurrency control. ASNStream and
ASNString classes support ASN.1 object classes for standards
support.

3.6 EIES2 Smalltalk Example

This section shall explain, with the use of an example, the
distributed nature of EIES2 Smalltalk. 	This simplified
example not only demonstrates the suitability of object
model for a distributed CSCW system, but also shows the ease
with which an application can be programmed without having
to know where (i.e., on which agent or machine) a certain
object is. Due to the space limitations we have selected a

- 14 -

simple application called "tell."

"Tell" of EIES2 performs a function similar to "write" on
Unix, for immediate communication between group members. On
EIES2, if it is desired to send a short message to another
user, the "tell" feature can be invoked either through the
menu or the command interface. The sender, has to provide
the identification of the intended target user (i.e.,
receiver) and the text of the message.

As a result of the above, if the receiver is currently
signed-on to EIES2, a window pops up on his/her screen.
This window displays the text of the message and the
identification of the sender. It also prompts the receiver
to "reply" to the message or just continue doing his/her
work, in which case the window disappears. On the other
hand if the intended receiver is not on-line the text of
"tell" is delivered to the user as a regular mail item.
This mail item can be viewed later by the receiver.

With respect to EIES2 this example feature can be envisioned
as follows:

The user agents (UAs 1 & 2 i.e., sender and receiver) or the
GA (Group Agent) could all be on the same machine or
different machines distributed across the network. 	Suppose
you (the sender) want to do a "tell" to Joe (the receiver)

- 15 -

with the text this utility, the following Smalltalk message
is sent to the class called "UserFace" (an instance of
UserFace is associated with each UA).

myUserFace tell: 'Hi Joe' note: joe. 	 (I)

The Smalltalk method invoked by this message (I) at UA1 is shown
as under.

1. class name UserFace
2.
3. methods instance 'tell'
4.
5. tell: aText note: aUser
6.
7. eiesObject tell: aText from: user to: aUser

It can be seen, in the method above, that the receiver of
the message (I) is an instance of the "UserFace" class,
which represents the user agent (UA1) of the sender. 	With
sender, receiver, and the text of the "tell" as arguments,
this method sends a message to the object named "eiesObject"
(see line number 7 in the method above). The "eiesObject"
is an instance of the class named "EIES" and resides on the
group agent (GA). The class EIES in a subclass of the class
View. An EIES object provides a global system view to a
particular group communication data base. An EIES object is
assiciate with a particular agent, but it may reference
Views from remote agents. A user agent logs into a
particular group agent by constructing a remote reference to
the EIES class on the desired agent. It obtains a valid
remote reference to the EIES object upon successful login.
The user agent can then access the "group memory" as its
assigned roles permit. It should be noted that there is
nothing in the method which requires the programmer to

- 16 -

provide any network related details. Since the object named
"eiesObject" is on the group agent and not on the user
agent, the CP finds this object, across network, and sends
it the message.

The respective method on group agent is shown as under.

1. class name EIES
2.
3. methods instance 'telling'
4.
5. tell: aText from: fromUser to: toUser
6. | receiverUF |
7.
8. receiverUF <- self userFaceForUser: toUser.
9. (receiverUF isNil) 	"User not on-line"
10. ifTrue:
11. [
12. (toUser getMessageView)
13. itemSubmit: nil
14. from: 	fromUser
15. newKeys: 	''
16. newAssoc: 	''
17. newTitle: 	'undelivered tell'
18. toUsers: 	toUser
19. withAttach: nil
20. withText: aText
21.]
22. ifFalse:
23. [
24. receiverUF
25. tellFrom: fromUser
26. note: 	aText
27. replyTo: fromUser.
28.].

This method validates the receiver and tries to get access
to the its "UserFace" object (line 8). It checks if the
receiver is currently signed-on (line 9). If the receiver
is not on-line then the text of "tell" is submitted to the

- 17 -

receiver's "View" as a mail item (lines 10 - 21). If the
receiver is signed-on at the time of "tell", the receiver's
"UserFace" will not be Nil. In this case a message is sent
to the "UserFace" object of the receiver, to inform him/her
of a "tell" (lines 24 - 27).

Once again, the "UserFace" object associated with the
receiver, more precisely the instance of the "UserFace"
class for receiver (i.e., UA2) could be on the same machine
as GA, or UA1, or another machine on the network. The
location of UA2 is completely transparent to the application
programmer. 	The receiver's "UserFace" is located by CP and
the message shown in the above method, lines 24 - 27, is
sent to it. The method invoked, as a result of this message
is shown as below.

1. class name UserFace
2.
3. methods instance 'tell'
4.
5. tellFrom: aUserName note: aText replyTo: fromUser
6. I tmpWind reply
7.
8. tmpWind <- Window
9. create: 3
10. xPos: 50
11. yPos: 5
12. xlen: 10
13. ylen: 10.
14. tmpWind label:
15. ('Tell message from:' concat: aUserName).
16. tmpWind put: aText.
17.
18. wChoice clear.
19. reply <- Wchoice input:
20. 'Enter reply or press return to continue >'.
21.
22. (reply sameAs: ")
23. ifFalse:
24. [
25. self tell: reply note: fromUser].
26.].

- 18 -

The functions performed by this method are:

(a)- make a window on the receiver's screen (lines 8 - 13),

(b)- label the window with appropriate message and the
sender's identification (lines 14 - 15),

(c)- put the text of the "tell" in the body of the window
(line 16),

(d)- clear the bottom portion (called wChoice) of the screen
and prompt the user to either reply to the "tell" or just
continue (lines 18 - 20), and

(e)- if the user provides a message (i.e., a non Nil string
object), it is sent back as a reply (lines 22 - 26). This
repeats the same procedure all over.

It can be seen from this method that it is extremely easy to
alter the user interface of EIES2. For example the receiver
of "tell" can very easily change the location or size of the
window.

4. CURRENT EIES2 STATUS

The current EIES2 development environment has a wide variety
of tools which is the foundation upon which advanced
features and enhancements are being developed. Current
capabilities of the application model include an easy-to-use
learner interface that supports: mail; conferencing with
branching to allow sub-conferences by topic and/or
responses; notifications; directory; keyword searching;
options to LIST, SCAN, and VIEW TEXT; context-sensitive
help; and an answer-ahead feature to provide short cuts; the
ability to design forms; a microcomputer user interface;
personal keywords to enable the user to define the way
information is organized; pop-up windows; horizontal and
vertical menus. A suite of activities are provided to
support the on-line virtual classroom and group decision
support. The system supports multimedia attachments.

- 19 -

Advanced applications currently planned include: group and
personal calendars, project coordination, library services,
group graphics design, and group hypertext.

/*
4.1 MAIL

The EIES2 mail facility provides a general capability for
communication among users. 	Mail is organized as 'mail
items" and "replies". Users who find themselves in a
discussion that does not interest them may drop the item and
not receive any further replies. Associated items are
maintained independently to support relations among items
across sub-systems and so that reply levels can be limited.

4.2 CONFERENCES

Conferences are communication structures organized by topic.
Conferences support roles such as moderators, participants
and observers. Members may be added or deleted and a
complete transcript of the conference is kept. Conference
items, like mail items, are organized as main items and
replies. 	In a conference, however, there may be more than
one level of replies. This organizes the conference into
sub-topics and sub-sub-topics. The conference moderator may
set the number of reply levels in the conference so that the
branching of replies-to-replies can be limited. A conference
can also be used as a general purpose discussion space for
any group activity where more specific structures are not
available or needed.

4.3 FORMS

The ability to communicate with forms rather than simple
text is extremely useful in the CSCW environment. A form
represents an implementation of structured messages as
described by Malone [6]. In the AMIGO Model of group
communications the EIES2 Form structure represents a Message
Type in the context of Activities defined for group
communications . A form can also be "attached" to a message
or to a conference comment. When the user views the
incoming message or the comment, he also will be prompted by
the system to fill out the form. When the user completes
the form, the information carried by the form will be

- 20 -

returned to the sender or other activity agent. In the
current implementation, returned forms are delivered to the
originator, and may be viewed, modified, or downloaded to
the users work station in data interchange format (DIF) for
further analysis.

4.4 ATTACHMENTS

Attachments provide a mechanism for associating activities
with mail or conference items. The types of attachments
currently supported include texts, items, forms, documents,
and binary files. 	Other types are planned for "virtual
classroom" and other applications. Text attachments, for
example, allow a short introduction of a long text item.
This allows receivers to easily decide whether they wish to
read the long item or not. Item attachments allow
forwarding of items received to other users. 	Binary files
attachments provide an convenient means for micro-computer
users to exchange software, documents, spread sheets, and
other information in the CSCW environment.

4.5 ACTIVITES

Activities are special attachments that in addition to being
seen or unseen by the receiver, they can also be done or
undone. The system keeps track of a users activities in
addition to new items.

4.6 KEYS

Keywords may be associated with any items on EIES2. Authors
are prompted for keywords when sending mail or entering
conference comments. In addition, receivers of items may
add "personal" keywords thus providing an easy means for
users to categorize items. For example, a user may add the
personal key "urgent" to items that call for immediate
attention. The keyword "projectx" might be used to maintain
a list of items relating to a particular activity.

- 21 -

4.7 FILTERS

A filter is a mechanism that allows special handling of
items that may be received in the future. Filters collect
items that meet a particular search criteria independent of
the subsystem of EIES2 they belong to. To the user, a filter
seems much like a conference. 	Items may be received or
otherwise operated on either in the filter, or in the
particular subsystem where they are entered in the same way.
This allows items from any subsystems that match particular
search criteria to be handled by the user easily. The user
is alerted to the presents of the new items at sign on and
may process the items readily through the filter.

4.8 NOTIFICATIONS

Notifications provide a mechanism to keep the user informed
as to actions taken by the system or other users that effect
the user. Examples of notifications are the confirmation
sent to a sender of a mail when the mail has been received
by its addressee(s), and a user being informed that he has
been added to a conference. Confirmations that another user
received private mail from you, or that you were added to a
conference are examples of notifications. You may also send
one line notifications to another user.

4.9 TALK

The "talk" facility on EIES2 provides for real time
interaction between members using a multiple window
interface. Crises management and certain other problem-
solving activities, where a quick consensus is required,
often work better with this type of interface.

4.10 Distributed functionality

*/

EIES2 supports three kinds of distributed conferences.

1. tight - no replication.

- 22 -

2. loose - partial replication.

3. foreign - complete replication, i.e. netnews.

We have the mechanisms is the eies2 distributed object
database to implement a wide variety of conference
distribution strategies. With both tight and loose
distribution we have tried to minimize user awareness of the
distributed nature of the system by maintaining unique item
and user names across the systems whenever possible.

The user agent only stores information pertaining to the
uses interface to the system. It only keeps copied of the
list of items the user is currently accessing. 	The user
list of conferences and number of items waiting is kept on
the group agent where the normally connects. Conferences in
the users list may be local to that group agent or they may
be located on remote eies2 group agents. Remote conferences
that are tightly coupled do not copy any information to the
local group agent. The number of items waiting and the
texts are accessed on demand from the remote group agent.
Loosly coupled remote conferences will have remote view
copies that keep the number of items waiting locally and
remote item copies to keep copies of the texts. 	When you
add a remote conference, you choose whether to make it
tightly or loosely coupled.

Internet users can be added to conferences and eies2 users
can receive conference items as internet mail. We can link
an EIES2 conference to a netnews news group. It is
important, for connectivity sake, that we also add the
ability to address EIES2 conferences from a mail only
interface. 	But much functionality is lost when the group
work environment is connected to communication only systems.

5. Summary

The Electronic Information Exchange System II (EIES2) is a
second generation computer-mediated communications system
developed at The New Jersey Institute of Technology with
support from the New Jersey Office of Telecommunications and

- 23 -

Information Services (OTIS), the Commission on Science and
Technology, and partnerships with AT&T Information Systems,
Computer Sciences Corporation, and Jutland Institute of
Technology in Denmark. 	EIES2 has been under development
since 1984. It has evolved to provide an easy to use
learner interface plus advanced features to satisfy both the
first time member and the most advanced members.

EIES2 provides a comprehensive environment for electronic
mail and computerized conferencing. 	The self organizing
properties of the communications database help members cope
with large amounts of on-line information. Conferencing
coupled with a hierarchical item response structure organize
communications into discussions and sub-discussions.
Keywords and associations link items across different
discussions. 	Personal keywords help members organize their
communications. Members may drop any discussion or sub-
discussion that does not interest them to minimize
information overload. The global search capability allows
members to find items anywhere on the system. Members can
specify search criteria in advance for items of particular
interest to them, these "filters" catch items as they are
entered in the system and alert members to new items that
are of particular interest to them. The on-line "forms"
facility supports semi-structured messages for on-line data
collection, this supports the development of group data
bases and helps structure on-line group activities such as
the "virtual classroom", automated facilities to support the
office, the project, the library, etc. EIES2 provides
extensive support for micro-computer users and can be
accessed by virtually any type of terminal or PC. A simple
menu system with consistent screen layouts provides
extensive on-line help for new users. Commands and answer-
aheads provide direct access to the full EIES2 capabilities
for the advanced user.

The distributed architecture and support of modern standards
will allow EIES2 to support a virtually limitless member
community. To date, EIES2 nodes have been installed at
NJIT, the University of Medicine and Dentistry of New
Jersey, and the Jutland Institute of Technology. 	EIES2
currently runs on equipment from Hewlett Packard, Digital
Equipment Corporation, Sun Microsystems, and AT&T.
Currently, EIES2 operates under the UNIX operating system
networking over TCP/IP networks. EIES2 networking

- 24 -

facilities have also been demonstrated over ISO, UUCP, and
simple asyncronous line networks. There are plans to
support VMS, AIX, MS-DOS and other operating environments.

EIES2 represents a set of tools for continued research at
NJIT into computer-mediated communications. EIES2 provides
it's own distributed Smalltalk environment to support the
development and study of future system for computer
supported cooperative work. It provides an integrated
Abstract Syntax Notation 1 (ASN.1) compiler to support the
current and future application layer standards.

EIES2 was developed as a research tool to become a
"Laboratory without Walls" which would reach outside of the
university environment and into organizations. It is
currently in use at NJIT for project coordination,
information exchange, group decision support, and electronic
class room applications. 	EIES2 has been used to teach
classes since 1988. It is now available to other
organizations both as a utility run at NJIT and as software
for sale. The application developers kit is also available
to outside organizations. For more information contact the
Computerized Conferencing and Communications Center (CCCC)
at NJIT, King Blvd., Newark, NJ 07102, telephone (201) 596-
EIES.

Further partnerships are being sought to apply the
technology in the development of distributed CSCW
applications, multi-media and PC user agent support, native
Smalltalk integration, the development of application layer
standards support, and in interfacing the EIES2 application
functions with lower layer services in various network
environments.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	1-1-1992

	EIES 2 : a distributed architecture for supporting group work
	Computerized Conferencing & Communications Center
	James Whitescarver
	Robert M. Czech
	Sreenivas Reddy
	Ajaz R. Rana
	See next page for additional authors
	Recommended Citation
	Authors

	Title Page and Abstract
	Contents
	1. An Architectural Model for Group Work
	2. EIES2 Implementation
	3. EIES2 SmallTalk Overview
	4. Current EIES2 Status
	5. Summary

