2,167 research outputs found

    Synchronization in semiconductor laser rings

    Full text link
    We examine the dynamics of semiconductor lasers coupled in a ring configuration. The lasers, which have stable output intensity when isolated, behave chaotically when coupled unidirectionally in a closed chain. In this way, we show that neither feedback nor bidirectional coupling is necessary to induce chaotic dynamics at the laser output. We study the synchronization phenomena arising in this particular coupling architecture, and discuss its possible application to chaos-based communications. Next, we extend the study to bidirectional coupling and propose an appropriate technique to optical chaos encryption/decryption in closed chains of mutually coupled semiconductor lasers.Comment: 15 pages, 7 figure

    Emergence of spike correlations in periodically forced excitable systems

    Get PDF
    In sensory neurons the presence of noise can facilitate the detection of weak information-carrying signals, which are encoded and transmitted via correlated sequences of spikes. Here we investigate relative temporal order in spike sequences induced by a subthreshold periodic input, in the presence of white Gaussian noise. To simulate the spikes, we use the FitzHugh-Nagumo model, and to investigate the output sequence of inter-spike intervals (ISIs), we use the symbolic method of ordinal analysis. We find different types of relative temporal order, in the form of preferred ordinal patterns which depend on both, the strength of the noise and the period of the input signal. We also demonstrate a resonance-like behavior, as certain periods and noise levels enhance temporal ordering in the ISI sequence, maximizing the probability of the preferred patterns. Our findings could be relevant for understanding the mechanisms underlying temporal coding, by which single sensory neurons represent in spike sequences the information about weak periodic stimuli

    Poesia barroca de la Guerra dels Segadors

    Get PDF

    Numerical and experimental study of the effects of noise on the permutation entropy

    Get PDF
    We analyze the effects of noise on the permutation entropy of dynamical systems. We take as numerical examples the logistic map and the R\"ossler system. Upon varying the noise strengthfaster, we find a transition from an almost-deterministic regime, where the permutation entropy grows slower than linearly with the pattern dimension, to a noise-dominated regime, where the permutation entropy grows faster than linearly with the pattern dimension. We perform the same analysis on experimental time-series by considering the stochastic spiking output of a semiconductor laser with optical feedback. Because of the experimental conditions, the dynamics is found to be always in the noise-dominated regime. Nevertheless, the analysis allows to detect regularities of the underlying dynamics. By comparing the results of these three different examples, we discuss the possibility of determining from a time series whether the underlying dynamics is dominated by noise or not

    Coherence and synchronization in diode-laser arrays with delayed global coupling

    Full text link
    The dynamics of a semiconductor-laser array whose individual elements are coupled in a global way through an external mirror is numerically analysed. A coherent in-phase solution is seen to be preferred by the system at intermediate values of the feedback coupling strength. At low values of this parameter, a strong amplification of the spontaneous emission noise is observed. A tendency towards chaos synchronization is also observed at large values of the feedback strength.Comment: 8 pages, LaTeX, 6 PS figures, to appear in International Journal of Bifurcation and Chao

    A new approach to local hardness

    Full text link
    The applicability of the local hardness as defined by the derivative of the chemical potential with respect to the electron density is undermined by an essential ambiguity arising from this definition. Further, the local quantity defined in this way does not integrate to the (global) hardness - in contrast with the local softness, which integrates to the softness. It has also been shown recently that with the conventional formulae, the largest values of local hardness do not necessarily correspond to the hardest regions of a molecule. Here, in an attempt to fix these drawbacks, we propose a new approach to define and evaluate the local hardness. We define a local chemical potential, utilizing the fact that the chemical potential emerges as the additive constant term in the number-conserving functional derivative of the energy density functional. Then, differentiation of this local chemical potential with respect to the number of electrons leads to a local hardness that integrates to the hardness, and possesses a favourable property; namely, within any given electron system, it is in a local inverse relation with the Fukui function, which is known to be a proper indicator of local softness in the case of soft systems. Numerical tests for a few selected molecules and a detailed analysis, comparing the new definition of local hardness with the previous ones, show promising results.Comment: 30 pages (including 6 figures, 1 table

    Dades històriques de l'odontologia relacionades amb les Illes Balears

    Get PDF

    Joan Carol Murillo (1917-1997) i la seva aportació a l'ortodòncia. Vida i obra

    Get PDF

    Associacions odontològiques catalanes (de l'inici al 1936)

    Get PDF
    • …
    corecore