research

Numerical and experimental study of the effects of noise on the permutation entropy

Abstract

We analyze the effects of noise on the permutation entropy of dynamical systems. We take as numerical examples the logistic map and the R\"ossler system. Upon varying the noise strengthfaster, we find a transition from an almost-deterministic regime, where the permutation entropy grows slower than linearly with the pattern dimension, to a noise-dominated regime, where the permutation entropy grows faster than linearly with the pattern dimension. We perform the same analysis on experimental time-series by considering the stochastic spiking output of a semiconductor laser with optical feedback. Because of the experimental conditions, the dynamics is found to be always in the noise-dominated regime. Nevertheless, the analysis allows to detect regularities of the underlying dynamics. By comparing the results of these three different examples, we discuss the possibility of determining from a time series whether the underlying dynamics is dominated by noise or not

    Similar works