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In sensory neurons the presence of noise can facilitate the detection of weak information-carrying
signals, which are encoded and transmitted via correlated sequences of spikes. Here we investigate
relative temporal order in spike sequences induced by a subthreshold periodic input, in the presence
of white Gaussian noise. To simulate the spikes, we use the FitzHugh-Nagumo model, and to
investigate the output sequence of inter-spike intervals (ISIs), we use the symbolic method of ordinal
analysis. We find different types of relative temporal order, in the form of preferred ordinal patterns
which depend on both, the strength of the noise and the period of the input signal. We also
demonstrate a resonance-like behavior, as certain periods and noise levels enhance temporal ordering
in the ISI sequence, maximizing the probability of the preferred patterns. Our findings could be
relevant for understanding the mechanisms underlying temporal coding, by which single sensory
neurons represent in spike sequences the information about weak periodic stimuli.

PACS numbers: 05.45.Tp; 87.19.ll; 89.70.Cf

INTRODUCTION

Many excitable systems, such as neurons and cardiac
cells, display spiking output signals that can be ana-
lyzed by using an event-level approach, i.e., by detecting
the times when the spikes occur, and then analyzing the
statistics of the time intervals between successive spikes
(inter-spike intervals, ISIs). Some important properties
of ISI sequences are related to coherence and stochas-
tic resonance phenomena. Coherence resonance refers
to enhanced spike regularity under an optimal level of
noise [1], while stochastic resonance refers to enhanced
detection and transmission of subthreshold time-varying
signals, also under an optimal level of noise [2–5].
Another relevant property of ISI sequences is the pres-

ence of correlations [6–9], which are known to influence
the neuron’s capacity of information transfer [10–13]. In
particular, while Gaussian white stochastic stimuli pro-
duce uncorrelated ISI sequences, correlated stochastic
stimuli and information-carrying stimuli generate corre-
lated spikes [14–17].
In the literature, temporal correlations in ISI sequences

have been quantified by means of the serial correlation
coefficients (SCCs), Cj ,

Cj =
⟨(Ii − ⟨I⟩) (Ii−j − ⟨I⟩)⟩

σ2
, (1)

where j is an integer number, {. . . Ii−1, Ii, Ii+1 . . .} is the
ISI sequence, and ⟨I⟩ and σ are the mean value and the
standard deviation of the ISI distribution.
SCCs and statistical analysis of the ISI distribution are

standard techniques to investigate spike trains. In the
last decade, however, nonlinear methods of time-series
analysis have been demonstrated useful for extracting
information from empirical or synthetic data generated
from nonlinear dynamical systems, but their potential for

the analysis of ISI sequences remains largely unexplored.
A particularly useful tool is known as symbolic analysis
[18]. In this approach, by defining an appropriated sym-
bolic rule, a time-series is transformed into a sequence
of symbols and its information content is described by a
set of discrete probabilities, defined in terms of the fre-
quencies of occurrence of the different symbols. Which
symbolic rule is appropriated to quantify the information
content of a time-series and to capture relevant properties
(such as the presence of more expressed or less expressed
symbols) depends on the specific system, as well as on the
length and characteristics of the data. Different symbolic
rules might capture different properties of the dynamics,
providing complementary information [18].

A popular symbolic technique, known as ordinal anal-
ysis [19], has been proven very useful for investigating
biomedical signals and other complex signals. It has been
used for classifying behaviors, for detecting dynamical
changes, for estimating model parameters, etc. [20–28].
Ordinal analysis uses symbols known as ordinal patterns
of length L, which are defined in terms of the relative
order relations of L data values. Because each symbol
is determined by L values, temporal information is in-
corporated in the symbolic sequence. In contrast, when
the encoding rule assigns a symbol to each individual
data point, the resulting symbolic sequence can be re-
garded a coarse-grained description of the time series.
One can then expect that ordinal analysis will provide
additional, complementary information to that gained by
SCCs. This is because SCCs performs a comparison of
two ISI values with a global magnitude (the mean ISI,
⟨I⟩), while in contrast, ordinal analysis performs a rela-
tive comparison of each data-point with the L − 1 pre-
vious data-points. In addition, one can expect that or-
dinal analysis provides complementary information with
respect to that gained from the statistical analysis of



2

the ISI sequence, because it keeps information about the
presence of temporal ordering in the sequence of ISI val-
ues, while the ISI distribution does not (shuffle surrogate
data has the same ISI distribution as the original data).
On the other hand, because ordinal analysis neglects the
actual ISI values (i.e., the precise duration of the inter-
spike intervals), one can expect that SCCs and the ISI
distribution will provide “amplitude” information that
can not be obtained with ordinal analysis.
Here our goal is to analyze order relations in ISI se-

quences generated by a single neuron driven by weak pe-
riodic and stochastic inputs. We perform extensive sim-
ulations of the FitzHugh-Nagumo (FHN) model (a clas-
sical example of an excitable nonlinear system), driven
by Gaussian white noise and a subthreshold sinusoidal
input: without noise there are no spikes (but only sub-
threshold oscillations). The simulated ISI sequences are
thus generated by the combined effects of noise and pe-
riodic forcing. Temporal correlations in the ISI sequence
are detected and quantified by the probabilities of the
ordinal patterns (OPs).
We demonstrate that these probabilities capture rel-

evant properties of the ISI sequence: we find the pres-
ence of preferred patterns which are tuned by i) the
period of the input signal and ii) the strength of the
noise. We also show that some probabilities display the
resonance-like feature of being enhanced for particular,
signal-dependent noise levels. In addition, for certain pa-
rameters we find that the OP probabilities are organized
in hierarchical structure, with clusters of two patterns
having very similar probabilities. We conclude with a
discussion of the relation between the OP probabilities,
the mean ISI, and the SCCs.

MODEL

The FHN equations are [1]:

ϵ
dx

dt
= x− x3

3
− y, (2)

dy

dt
= x+ a+ ao cos(2πt/T ) +Dξ(t), (3)

where x is the fast variable and y is the slow one, ϵ << 1
and a is a control parameter such that, when |a| > 1
there is a stable fixed point, and when |a| < 1, there
is a stable limit cycle; ξ(t) is a white Gaussian noise of
zero mean and unit variance and D is the noise strength;
ao and T are the amplitude and the period of the input
signal.
The FHN model was simulated with parameters as

in [1]: a = 1.05 and ϵ = 0.01; a0 and T were varied
such that the input signal is kept subthreshold (with-
out noise there are no spikes). The model equations are
integrated with random initial conditions and a second-
order Runge-Kutta method, with integration step 0.005.

Figure 1 displays typical spike sequences, where the spike
times, ti, are detected by using a threshold. Then, the ISI
sequence is defined as {Ii}, with Ii = ti − ti−1. For each
set of parameters, time-series with more than 100,000
ISIs were generated (the first 100 ISIs were neglected to
let transients die away).
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FIG. 1. (Color online) Time-series generated from the FHN
model with parameters a = 1.05, ϵ = 0.01, and D = 0.015. In
(a) ao = 0, while in (b) and (c) ao = 0.02, T = 10 and T = 20
respectively. The spike times are detected with the threshold
y = 1.5. In panels (b) and (c) the dashed line indicates the
value of cos(2πt/T ).

METHODS

As discussed in the Introduction, the OPs are defined
by the relative ordering of L ISI values. Neglecting equal-
ity, for L = 2, Ii < Ii+1 gives pattern ‘01’ and Ii > Ii+1
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gives ‘10’; for L = 3 the L! = 6 possible order relations
are indicated in the inset of Fig. 2: Ii < Ii+1 < Ii+2

gives pattern ‘012’; Ii+1 < Ii < Ii+2 gives pattern ‘102’,
etc. If Ii = Ii+1, a small random value is added before
computing the ordinal pattern. Longer order relations
can be analyzed by either using lags (considering non-
consecutive values, Ii, Ii+τ and Ii+2τ ) or by using longer
patterns (for L = 4 there are 4! = 24 possible order re-
lations, for L = 5 there are 5! = 120 order relations,
etc.). In this work we analyze consecutive ISIs (τ = 1)
and mainly focus on OPs of length L = 3, but we also
analyze longer correlations with L = 4 and L = 5 OPs.
If the L! patterns are equally probable, one can con-

clude that there are no preferred order relations among
L consecutive ISI values; in contrast, a non uniform dis-
tribution of OP probabilities reveals the presence of pre-
ferred and/or infrequent order relations. The interval of
probability values which is consistent with the uniform
distribution is computed with a binomial test: if the OP
probabilities are within the interval [p−3σ, p+3σ], where
p = 1/L!, σ =

√
p(1− p)/M , and M is the number of

OPs, then, the probabilities are consistent with the uni-
form distribution with 95 % confidence level.
The set of ordinal probabilities, pi with i ∈ [1 . . . L!],

has associated an entropy, known as permutation entropy
[19, 27, 28], which is defined as H = S/Smax, with
S = −

∑
pi log pi and Smax = log L!. The permu-

tation entropy provides a complexity measure for time-
series and even very small deviations from H = 1 can
be used for detecting signatures of underlying determin-
ism, for identifying dynamical changes and characteristic
time-scales, etc. [21, 24–26, 29].

RESULTS

Let us first analyze the ISI sequence generated by the
stochastic input only (ao = 0). Figure 2(a) displays the
probabilities of the six OPs as a function of the noise
strength, and the grey region indicates the probability
region consistent with the uniform distribution. We can
observe that, within the range of noise strength consid-
ered, the six probabilities are in the grey region, and thus,
they are consistent with equally probable patterns, i.e.,
no order relations are detected in the ISI sequence. This
is interpreted as due to the fact that the spikes are in-
duced by a fully random process (Gaussian white noise).
Next, we add the weak periodic input, and again plot

the OP probabilities vs the noise strength [in Fig. 2(b),
T = 10; in Fig. 2(c), T = 20]. We observe a resonance-
like phenomenon, in which the probabilities of some
patterns lie outside the grey region for certain noise
strengths. For example, in Fig. 2(b), we note that for
D ∼ 0.03, “V” and “Λ” are the preferred patterns; in
Fig. 2(c), with weak noise “V” and “Λ” are preferred,
but with higher noise, ‘012’ and ‘210’ are preferred.

The effect of the periodic signal gradually increases
with its amplitude. This is shown in Fig. 3 that displays
the OP probabilities vs. ao, keeping fixed the period
of the signal and the strength of the noise. We con-
sider weak noise [Fig. 3(a)] and stronger noise [Fig. 3(b)],
which induce different ISI order relations [as indicated
with arrows in Fig. 2(c)]. We observe that, in both
cases, as ao increases, the OP probabilities gradually
leave the grey region, revealing that order relations grad-
ually emerge in the ISI sequence. We note that, within
the range of values considered here (the input is sub-
threshold), ao does not change the preferred OPs.

In order to investigate the role of the period of the
input signal, in Fig. 4 we display the OP probabilities
vs. T . We consider weak and stronger noise (the same
levels as in Fig. 3). We note that when the input signal
is fast, the OP probabilities are inside the gray region,
but for slower input, they lie outside. We also note that
the preferred patterns depend on both, T and D, and
there is a resonant-like effect in the form of enhanced
probability of particular OPs for specific values of T and
D. For example, for D = 0.035 [Fig. 4(b)] patterns ‘012’
and ‘210’ are preferred for T ∼ 6, but they are unlikely
to occur for T ∼ 10.

To explore the length of temporal ordering, we show
in Fig. 5(a), for the same parameters as Fig. 4(b), the
probabilities of OPs of length L = 2. We observe that
they are in the grey area, which indicates that there is no
temporal order in the ISI sequence. However, the prob-
abilities of L = 3 OPs revealed the presence of patterns
with favored occurrence, as it was shown in Fig. 4(b).
Therefore, we conclude that, in order to uncover tempo-
ral ordering, the ISI sequence has to be analyzed with
OPs of appropriate length: if the length of the OP is too
short, no temporal ordering is detected (as shown here,
with L = 2 OP the probabilities are within the grey area
consistent with equi-probable OPs), while if the length
of the OP is too long, as will be shown below, the large
number of OPs will require very long time-series in order
to compute the OP probabilities with robust statistics.

To explore the effect of longer OPs, it is unpractical
to display the probabilities of 24 L = 4 OPs or 120
L = 5 OPs. Therefore, in Fig. 5(b) we plot the per-
mutation entropy, H, computed with patterns of length
L=3, 4, and 5 vs. the period of the input signal. The
value of H very close to 1 indicates that the time-series
is highly stochastic. This is expected because the mod-
ulation is subthreshold and the spikes are noise-induced.
However, a small variation of the permutation entropy
is a signature of a transition as T increases: for T < 5,
H ∼ 1, while for longer T , H tends to decrease, but non-
monotonically, i.e., there are values of T for which H is
minimum, indicating the existence of more probable pat-
terns and thus, temporal ordering in the ISI sequence.
We also note that, while for T < 5 H ∼ 1 for L = 3− 5,
for T > 5, the permutation entropy decreases with L,
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FIG. 2. (Color online) Probabilities of the six ordinal pat-
terns (OPs) that are defined by the relative length of three
consecutive inter-spike-intervals (ISIs) vs. the noise strength.
The OPs are schematically shown in the inset. The parame-
ters are (a) ao=0, (b) ao=0.02, T = 10, (c) ao=0.02, T = 20;
other parameters are as indicated in the text. In panel (c),
the arrows indicate the noise levels used in Figs. 3 and 4.
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FIG. 3. (Color online) OP probabilities vs. the amplitude of
the input signal. The parameters are T = 20, (a) D = 0.015
and (b) D = 0.035, other parameters as in Fig. 1.
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FIG. 4. (Color online) OP probabilities vs. the period of the
input signal. The parameters are ao=0.02, (a) D = 0.015 and
(b) D = 0.035, other parameters as in Fig. 1.
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FIG. 5. (Color online) (a) Probabilities of patterns ‘01’ and
‘10’ vs. the period of the input signal. (b) Permutation en-
tropy vs. T for OPs of length L =3, 4, and 5. In panels (a)
and in (b) the parameters are as in Fig. 4(b).

indicating the longer range of temporal ordering.

The influence of the length of the time series, M , is
shown in Fig. 6 that displays the OP probabilities vs. M .
We see that, with a periodic input signal [panels 6(a) and
6(b)], the OP probabilities are outside the grey region, if
M is large enough. Moreover, in panel 6(b), “clusters”
of OPs with similar probabilities are seen, only if M >>
103 (similar clustering was reported in [30]). In contrast,
without periodic input [panel 6(c)] the probabilities are
inside the grey region and no clustering is seen, even for
large M .

Interestingly, the behavior of the OP probabilities
seen in Fig. 3(a) resembles that found experimentally in
a modulated semiconductor laser that emits feedback-
induced optical spikes [30]. As shown in Fig. 4(a) in
[30], when the modulation amplitude increases there is a
transition to a dynamical state in which some OP proba-
bilities are outside the grey region, and, remarkable, the
OP probabilities are organized in the same “clusters”,
and with the same hierarchy (the same ordering of the
OP probabilities) as observed in Fig. 3(a) here. This
qualitative similarity can be due to a generic behavior of
excitable systems, that can be described by circle maps
[31]. As shown in [30], a modified circle map qualitatively
explains the behavior of the OP probabilities computed
from the laser data, and it has been shown to also ex-
plain serial correlations in empirical ISI data [17]. This
suggests that similar behavior can be observed in other
excitable systems.
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FIG. 6. (Color online) (a) Probabilities of patterns ‘01’ and
‘10’ vs. the number, M , of inter-spike intervals in logarithmic
scale. (b) Probabilities of the 6 L = 3 OPs vs M . For both,
(a) and (b), the parameters are ao = 0.025, D = 0.015 and
T = 20. (c) Same as panel (b) but with ao = 0.

COMPARISON WITH MEAN-ISI AND
CORRELATION ANALYSIS

Since both, the noise strength, D, and the period of the
input signal, T , modify the neuron’s spike rate, one could
expect that the underlying reason for the variation of the
OP probabilities with D and T is related to the spike rate
variation. One could also wonder if these changes are also
captured by correlation analysis.

To investigate if there is a close relation between the
values of the OP probabilities and the serial correlation
coefficients, C1 and C2, and the mean ISI, ⟨I⟩ (the in-
verse of the spike rate), Figs. 7-9 display, for the same
parameters as Figs. 2-4, C1 and C2 (center column) and
the mean ISI (right column). For easy comparison, the
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FIG. 7. (Color online) Left column: OPs probabilities; central
column: correlation coefficients and right column: mean inter-
spike-interval. The parameters are as in Fig. 2: (a) ao=0, (b)
ao=0.02, T = 10, (c) ao=0.02, T = 20.
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spike-interval. The parameters are as in Fig. 3: T = 20, (a)
D = 0.015 and (b) D = 0.035.

0 10 20 30

0.14

0.16

0.18

P
ro

ba
bi

lit
ie

s

(a)

0 10 20 30
−0.2

−0.1

0

0.1

S
C

C

(c)

0 10 20 30
8

9

10

11

12

13

M
ea

n 
IS

I

(e)

0 10 20 30

0.15

0.16

0.17

0.18

0.19

P
ro

ba
bi

lit
ie

s

(b)

Modulation period
0 10 20 30

−0.1

−0.05

0

0.05

0.1

S
C

C

(d)

Modulation period
0 10 20 30

4.5

4.6

4.7

4.8

M
ea

n 
IS

I (f)

Modulation period

FIG. 9. (Color online) Left column: OPs probabilities; central
column: correlation coefficients and right column: mean inter-
spike-interval. The parameters are as in Fig. 4: ao=0.02, (a)
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OP probabilities are also shown in the left column.
First, we note that the variation of ⟨I⟩ with D and

T is not correlated to that of the OP probabilities: in
particular, we see no similar trend. Second, we note that
C1 and C2 display smooth variations, similar to those of
the OP probabilities. As expected, when C1 < 0 and
C2 > 0 the most expressed OPs are Vs and Λs (‘021’,
‘120’, ‘201’, ‘102’).
In addition, under particular conditions “equivalent

situations” can be identified. For example, in Fig. 9
first row, for T = 20 and D = 0.015, ⟨I⟩ = 12 ∼ T/2. In
this case, patterns ‘012’ and ‘210’ are the less expressed.
Comparing with the second row (for D = 0.035), for
T = 10, ⟨I⟩ = 5 ∼ T/2, and also patterns ‘012’ and ‘210’
are the less expressed. The two situations are “equiva-
lent” because in both cases ⟨I⟩ ∼ T/2, and when T = 20
and D = 0.015 (Fig. 9, first row): C1 ∼ −0.08 and
C2 ∼ +0.05, while when T = 10 and D = 0.035 (Fig. 9,
second row), C1 ∼ −0.08 and C2 ∼ +0.05.
However, in general, no clear relations can be inferred

from these plots. In order to search for such relation, in
Fig. 10 we have collapsed all data sets in scatter plots,
which display the OP probabilities vs. C1 and C2. For
clarity the OP probabilities are separated in three groups:
the trend patterns (‘012’ and ‘210’ in the left column
of Fig. 10), and the two clusters of patterns that have
similar probabilities (‘021’ and ‘102’ in the center column
and ‘120’ and ‘201’ in the right column). In the scatter
plots no clear relations between C1 and C2 and the OP
probabilities are seen, but there is a well-defined trend
with C2 (however, the relation is not one-to-one).
To further explore the relation between the OP prob-

abilities and the serial correlation coefficients we have
re-done the scatter plots, now plotting the pattern prob-
ability in color code vs. C1 and C2. Figures 11(a) and
11(b) display the probability of the trend pattern ‘012’
and of the ‘V’ pattern ‘102’, respectively, again collaps-
ing all data sets shown in Figs. 7-9. Here again we see
a clear trend with C2 but no trend with C1. We note
that the trend pattern ‘012’ (the ‘V’ pattern ‘102’) is less
probable (is more probable) if C1 < 0 and C2 > 0. We
again note that the relation is not one-to-one and similar
values of C1 and C2 might correspond to different values
of the ordinal probabilities, thus, the ordinal probabili-
ties cannot be predicted from knowledge of ISI statistics;
however, the trends seen in these plots allow predicting
that if C1 < 0 and C2 > 0, pattern ‘012’ (pattern ‘102’)
will be less (more) expressed than expected if the six
patterns are equally probable.
We conclude this section by summarizing the infor-

mation gained with ordinal analysis, which could not be
inferred from correlation analysis:
i) For a wide range of parameters, in the ISI sequences

there are OPs which have almost equal probabilities:
‘021’,‘102’ and ‘201’,‘120’.
ii) For a wide range of parameters, there is a well-

defined hierarchy in the probabilities of the various OPs.
For example, in Fig. 7(b), for D > 0.04,

P (102) = P (021) > P (120) = P (201) > P (210) >
P (012),

while in Fig. 9(a), for T > 15,
P (120) = P (201) > P (102) = P (021) > P (012) >

P (210).
iii) The ordinal probabilities allow computing the per-

mutation entropy, shown in Fig. 5(b), that displays a
sharp transition at T = 10. Such transition is not seen
in ⟨I⟩, C1 or C2, which vary smothly with the modulation
period (as shown in Fig. 9).

These observations provide a complementary approach
for a qualitative comparison of empirical and synthetic
ISI sequences, and can also be useful for distinguish-
ing/classifying different types of ISI sequences.

CONCLUSIONS

To summarize, we have studied the emergence of rel-
ative temporal order in spike sequences induced by the
interplay of a stochastic input and a subthreshold pe-
riodic input. By using symbolic analysis we uncovered
preferred ordinal patterns, which are tuned by the pe-
riod of the input signal and by the strength of the noise.
We have also shown that the probabilities of specific pat-
terns are maximum or minimum for particular values of
the period of the input and the strength of the noise.
Our findings could be useful for contrasting empirical and
synthetic ISI sequences, for validating neuron models or
estimating their parameters. Moreover, our results could
motivate new experiments on single sensory neurons, to
further understand the mechanisms by which they encode
information about weak stimuli in noisy environments.
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