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Abstract. We analyze the effects of noise on the permutation entropy of dynamical

systems. We take as numerical examples the logistic map and the Rössler system. Upon

varying the noise strength we find a transition from an almost-deterministic regime,

where the permutation entropy grows slower than linearly with the pattern dimension,

to a noise-dominated regime, where the permutation entropy grows faster than linearly

with the pattern dimension. We perform the same analysis on experimental time-series

by considering the stochastic spiking output of a semiconductor laser with optical

feedback, and find that the permutation entropy always increases faster than linearly.

Nevertheless, the analysis allows to detect regularities of the underlying dynamics and

model simulations are in a good agreement with the empirical data. By comparing

the results of these three different examples, we discuss the possibility of determining

from a time series whether the underlying dynamics is dominated by noise or not.

Keywords: Time series analysis, Entropy, Ordinal patterns, Permutation entropy,

Stochastic systems, Symbolic analysis.

1. Introduction

Ordinal analysis is a method of time series analysis that consists of computing the

probabilities of ordinal patterns, which are defined according to the ordering of D

consecutive values in the series [1]. The entropy of these probabilities, referred to

as permutation entropy, is a tool to detect possible regularities in the time series.

In recent years, ordinal patterns and permutation entropy have been widely used to

investigate complex dynamical systems [2,3]. They have been employed in the attempt

to distinguish noise from chaos [4–7], to detect noise-induced order [8], serial correlations

[9] and dependencies between two or more time series [10–16], among many other

examples. Applications to experimental time series analysis include classification and

discrimination of dynamical states in normal and epileptic EEG [17–20] and detection of

heart rate variability under different physiological and pathological conditions [21–23].
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Given this growing interest, it is relevant to understand the relation between the

permutation entropy and other complexity measures. In particular, a well-established

way to characterize the production of information of a dynamical system is the

Kolmogorov-Sinai entropy hks, see e.g. [24, 25]. To compute hks, the time series is

discretized by partitioning the phase space into regions and assigning a symbol to each

region. Then one computes the probabilities of blocks, which are vectors ofD consecutive

symbols (more details in the following sections). The entropy of the block probabilities

is the block entropy. The Kolmogorov-Sinai entropy is finally obtained as the rate of

growth, for D → ∞ and in the limit of a very refined partition, of the block entropy.

Similarly to hks, one can introduce a permutation entropy rate as the rate of growth

for D → ∞ of the permutation entropy. Both the permutation entropy and the

Kolmogorov-Sinai entropy measure the “asymptotic” information rate of representations

of the time series, the former with ordinal patterns (based in the relative order of

consecutive values) and the latter with blocks (based on a partition of the phase space).

The permutation entropy rate and hks are not only conceptually related: for piecewise

monotone interval maps on the real line, they were shown to be equal [26]. This result

has been later extended to a broad class of dynamics [28, 29]. This equivalence is

non-trivial considering, for example, that the number of total possible ordinal patterns

grows with D as D!, while the number of blocks grows as QD where Q is the total

number of symbols. The two quantities can be equal only thanks to the large number

of forbidden ordinal patterns, strongly limiting the growth of the permutation entropy

as D is increased.

These mathematical results clarify that, under general hypotheses, permutation

and block entropies share the same asymptotic behavior. However, due to difficulties in

reaching the asymptotic regime, this equivalence can be of little use in many practical

cases. For example, it has been noted [26] that the rate of convergence of the permutation

entropy to the Kolmogorov-Sinai entropy is extremely slow even for one-dimensional

maps, while on the contrary, block entropies converge very quickly, see e.g. [24].

Comparing the two analyses becomes even more problematic for high-dimensional

and/or noisy dynamics, such as typical experimental time-series. Consider for example

the extreme case of a time series dominated by noise, in which all symbols are equally

probable and temporal correlations are absent. In this case, the block entropy of length

D is equal to D ln(Q), where Q is the total number of symbols, while the permutation

entropy with patterns of lengthD is equal to ln(D!) ∼ D lnD. This means that the block

entropy is linear in D, with a slope ln(Q), explicitly dependent on the chosen partition,

which diverges only in the limit of a very refined partition, Q → ∞. In contrast, the

permutation entropy grows more than linearly, so that their asymptotic slope is infinite.

In both cases, the result is an infinite entropy rate. However, to discover it, in the

first case one needs to construct a very refined partition. In the second case, one needs

to reach large values of D to appreciate that the slope increases logarithmically. Both

these tasks can be very difficult when analyzing a finite time series due to statistical

limitations.
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Our goal is to get a better understanding of how noise influences the permutation

entropy. To this aim, we analyze simulated and experimental time series. We mostly

focus on permutation entropy as the effect of noise on block entropies is fairly well

understood, see e.g. [30, 31]. We first analyze time series generated from the logistic

map and from Poincaré sections of the three-dimensional Rössler system. We conclude

with an experimental example and a numerical model data of the output intensity of a

semiconductor laser with optical feedback.

2. Methods

2.1. Numerical data

We consider two dynamical systems: the one-dimensional logistic map and the three-

dimensional Rössler system. In both cases, we study the effect of adding to the

dynamical equations a Gaussian white noise, ξt with ⟨ξt⟩ = 0 and temporal correlation

⟨ξtξt′⟩ = δt,t′ . We considered also the case of observational noise (not shown), where the

dynamics is deterministic but the noise affects the observation, obtaining very similar

results.

2.1.1. Logistic map

xt+1 = 4xt(1− xt) + αξt, (1)

where xt is the state of the system at iteration t and α is the noise strength. In order

to constrain the variable xt in the interval [0, 1], the values of ξt that would lead to

xt+1 > 1 or xt+1 < 0 are simply discarded and redrawn. Thus, the noise ξt is temporally

uncorrelated, but not purely Gaussian due to this truncation effect. To investigate

the variation of the permutation entropy with the noise strength, we computed the

permutation entropy, for each value of α, from time series of length N = 1.2× 107. We

have also studied other nonlinear one-dimensional maps (Tent, Bernoulli and Quadratic)

and obtained very similar results to those of the logistic map (results not shown).

2.1.2. Rössler system The Rössler equations read

Ẋ = − Y − Z + αξ(t),

Ẏ = X + aY (2)

Ż = b+ Z(X − c)

where {X,Y, Z} are the states of the system at time t, α is the noise strength and

{a, b, c} are the local parameters set at {0.1, 0.1, 18.0}, respectively.
In order to apply the symbolic methods (ordinal patterns or blocks) we need to

discretize the dynamics. Instead of employing temporal sampling [33], we introduce

a Poincaré section [34] at X = 0, and analyze the time intervals between consecutive

crossings of the Poincaré plane. The reason for this choice is that it is conceptually

similar to how we discretize the experimental time series, as discussed in the next
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subsection. For each value of α, the permutation entropy is computed from time-series

of N = 1.2× 107 data points.

2.2. Experimental data

Experimental data was recorded from the output intensity of a semiconductor laser

with optical feedback operating in the low-frequency fluctuations (LFFs) regime. In this

regime, the laser intensity displays sudden and apparently random dropouts, followed by

gradual recoveries. This spiking dynamics has received considerable attention because

the intensity dropouts are induced by stochastic effects and deterministic nonlinearities.

The optical feedback introduces a delay which renders the system in principle infinite

dimensional. Therefore, the laser in the LFF regime generates complex fluctuations that,

because of the stochastic and high-dimensional nature of the underlying dynamics, are

interesting candidates to be investigated by means of complexity measures such as the

permutation and block entropies.

The experimental setup is the same as in [32] and uses a 650 nm AlGaInP

semiconductor laser (SONY SLD1137VS) with optical feedback. The feedback was given

through a mirror placed 70 cm apart from the laser cavity, with a round trip of 4.7 ns.

The feedback was controlled using a neutral density filter that can adjusts the light

intensity injected into the laser. The laser has a solitary threshold current of Ith = 28.4

mA. The temperature and current of the laser were stabilized using a combi controller

Thorlabs ITC501 with an accuracy of 0.01 C and 0.01 mA, respectively. The current

used during the experiment was I = 29.3 mA and the temperature was set at T = 17 C.

The neutral density filter was adjusted so that the threshold reduction due to feedback

was about 7%. The signal was captured using a photo detector (Thorlabs DET210)

connected to a FEMTO HSA-Y-2-40 amplifier and registered with a 1 GHz digital

oscilloscope (Agilent Infiniium DSO9104A) with 0.2 ns of sampling. The intensity time

series were acquired from the oscilloscope by a LabVIEW program that uses a threshold

to detect the times when the intensity drops, and calculates the time intervals between

successive threshold crossings (in the following, referred to as inter-dropout-intervals,

IDIs). We recorded in this way time series of more than 105 consecutive IDIs.

2.3. Methods of analysis

We compare two different methods to transform a time-series, x(t) = {x(1), x(2) . . .

x(N)}, into a sequence of symbols, s(t): ordinal patterns and blocks.

In both cases, one needs to choose a dimension D for defining vectors made up of

consecutive entries of the time series, i.e. {x(i), x(i + 1), . . . , x(i + D − 1)}. Ordinal

patterns and blocks differ by the way in which the entries of these vectors are transformed

into symbols. Ordinal patterns classify them according to the ranking (from the largest

to the smallest value) of the D entries in the vectors. The total number of ordinal

patterns of length D is then equal to the number of permutations, D!. For example,
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Figure 1. Permutation entropy (HD) as a function of the size of the ordinal pattern

(D) and the noise strength (α) for data generated from the Logistic map. (a) HD vs

D for α = 1×10−4 (stars), α = 2×10−2 (triangles), α = 5×10−2 (inverted triangles),

α = 0.1 (circles), α =1 (pentagons) and Hmax = lnD! (solid line). (b) HD versus α

for D = 2 (stars), D = 3 (triangles), D = 4 (inverted triangles), D = 5 (circles), D = 6

(pentagons), D = 7 (squares) and D = 8 (diamonds).

with D = 2 there are two ordinal patterns: x(ti) > x(ti+1) corresponding to the ordinal

pattern ‘01’ and x(ti) < x(ti+1) corresponding to the ordinal pattern ‘10’.

In cases when, due to finite resolution, equal values can occur, a small observational

noise (10−8) is added to the time-series. The amplitude of the noise is sufficiently small

to not modify the ordinal relations in the data set, except for entries of equal value.

Equal values are very rare for all the time series we considered.

For blocks, the phase space is first divided into Q regions, associating a symbol

to each region. Blocks represent all vectors in which each value of the time series

correspond to the same symbol. For example, let us consider the time series x(t) =

{0.1, 0.6, 0.7, 0.3}, and partition the phase space into the two regions [0, 0.5) and [0.5, 1],

associating to them the symbols 0 and 1 respectively. With D = 2, the blocks associated

to the time series are {01, 11, 10}.
Then the estimation of the permutation entropy [1] or the block entropy [24,25], is

simply the entropy of the frequency pi of the different patterns in the time series

HD = −
M∑
i

pi ln pi, (3)

where M is the number of possible patterns: for permutation entropy, M = D!, while

for block entropy, M = QD.

3. Results

3.1. Logistic map

Figure (1a) displays the permutation entropy, HD, vs the dimension of the ordinal

patterns, D, computed from time series of the logistic map at different noise strengths.
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It can be observed that HD increases monotonically with D, regardless of the noise

strength. As the noise increases, HD approaches its maximum value, corresponding to

equally probable ordinal patterns, Hmax = lnD! (solid black line). Note that at α = 1

(pentagons) the values of HD is already very close to Hmax. Figure (1b) displays HD

as a function of the noise strength α. A clear transition from low-noise to high-noise

can be observed, for a value of the noise strength approximately independent of D.

The difference between the values of the entropies at low and high noise becomes more

pronounced as D increases.

To further investigate this transition, Fig. (2a) displays the difference HD −HD−1

as a function of D, for various values of noise strength. As before, we indicate with

a thin black line the noise-dominated limit in which all patterns are equiprobable,

HD − HD−1 = (lnD! − ln(D − 1)!). In the opposite limit of almost-deterministic,

as D grows the expected value of HD − HD−1 is the Kolmogorov-Sinai entropy [26],

which for a one-dimensional chaotic map is equal to the Lyapunov exponent λ. In the

case of logistic map for a local parameter set at 4 one has λ = ln 2, indicated by the

thick black line. As shown in detail in Fig. (2c), we identify three possibilities:

• a almost-deterministic regime in which HD −HD−1 decreases for large D,

• a noise-dominated regime in which HD −HD−1 increases for large D,

• an intermediate regime in which HD −HD−1 remains nearly constant with D.

In principle, this qualitative feature of the permutation entropy can be applied to

experimental time series to assess whether the dynamics is dominated by noise or by

the deterministic dynamics.

We remind that this distinction can not be done for the block entropy, as in

this case HD − HD−1 is necessarily a decreasing function of D (see e.g. [35, 36]).

This fundamental difference between permutation entropy and block entropy can be

appreciated by comparing the left and right panels of Fig. (2).

3.2. Rössler system

For the analysis of time series of the Rössler system, we considered the Poincaré plane

X = 0, shown in Fig. (3a), and analyzed the sequence of time-intervals between

consecutive crossings. Figure (3b) shows the difference HD −HD−1 vs D, for different

values of α. The solid line indicates the expected value if all ordinal patterns were equally

probable, HD−HD−1 = lnD!− ln(D−1)!. Because of the high level of stochasticity, we

calculate the confidence interval that is consistent with the null hypothesis of equally

probable ordinal patterns: in Fig. (3b) the gray region represents the expected value

±3σ, where σ is the standard deviation calculated for a hundred surrogated (shuffle)

time-series.

Before testing the method in experimental data we want to investigate how the

choice of the Poincaré section influences the results. We consider a Poincaré section in

the plane Z = β, as shown in Fig. (4a), and varying β in the range [0.05 − 26.7], for
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Figure 2. Comparison of the entropy computed from ordinal patterns, and the entropy

computed from the blocks, for the Logistic map. The difference HD −HD−1 is plotted

vs. the dimension of the ordinal patterns (a,c) and of the blocks (b,d) for various

values of noise strength [the noise strengths are as in Fig. (1a)]. In panels (a) and

(b) the solid lines indicate the asymptotic values for low noise (thick) and high noise

(thin). Panel (c) and (d) display a detail of (a) and (b).
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Figure 3. (a) Rössler attractor and Poincaré section in X = 0. (b) Permutation

entropy difference, HD − HD−1, vs the dimension of the ordinal patterns, D, for

noise strength α = [0 (star), 0.8 (triangle), 1.6 (inverted triangle), 2.4 (circle), 3.2

(pentagon), 4 (square)]. The gray region indicates the values of HD − HD−1 that

are consistent with equally probable ordinal patterns (see text for details). For the

smallest value of alpha, HD −HD−1 shows a non-monotonic behavior, while for higher

values of the noise strength, HD −HD−1 grows monotonically with D.
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Figure 4. (a) Rössler attractor and Poincaré section placed in z = β. (b) Permutation

entropy difference, HD − HD−1, vs the dimension of the ordinal patterns, D, for

β = 0.05 (stars), β = 6.7 (triangles), β = 13.4 (inverted triangles), β = 20.0(circles),

β = 26.7 (pentagons). The behavior is qualitatively similar to the one observed in Fig.

(3b).

a fixed value of α = 0. In this case, to discretize the time series, we analyze the time

values when the trajectory intersects the Poincaré section and Z grows.

Figure (4b) displays the difference HD −HD−1 vs. D, for different values of β. We

can see that the difference HD −HD−1 increases with β. This is due to the fact that, as

β is increased, consecutive values in the time-series become increasingly uncorrelated,

similarly to when increasing the noise strength. On the contrary, for the minimum

value of β, the variation of HD − HD−1 with D is resemblant to the behavior under

almost-deterministic observed in Fig. (3b).

3.3. Laser dynamics: experimental data and model

Next, we analyze experimental data from the laser output intensity, displayed in Fig.

(5a). To discretize the data we consider the thresholds indicated with horizontal

lines in Fig. (5a), and analyzed the time intervals between consecutive threshold-

crossings [7, 9, 32]. Figure (5b) displays the difference HD − HD−1 vs. D, for different

thresholds. Note that HD −HD−1 varies with the threshold in a similar way as in Fig.

(4b): as the threshold decreases, correlations between consecutive dropouts are lost.

For all the thresholds, HD−HD−1 grows monotonically with D. The reason is that

the empirical time series is very noisy and the “almost-deterministic” regime is not seen,

not even for the highest threshold. Nevertheless, the values of HD − HD−1 lie outside

the gray region that indicates values consistent with equally probable ordinal patterns.

This reveals that the sequence of intensity dropouts are not completely uncorrelated,

and thus, this method can determine regularities also in very noisy data.

The time-delayed Lang-Kobayashi model [27] is a widely studied model of laser

dynamics, which generates a high dimensional LFF dynamics. It is therefore of interest

to compare time-series generated by this model with the experimental ones. The model
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Figure 5. (a) Experimentally recorded time-series for the output intensity of a

semiconductor laser, which operates in the low-frequency fluctuations (LFFs) regime,

induced by self time-delayed optical feedback. The horizontal lines indicate the

thresholds used to detect the dropout times. (b) Permutation entropy difference,

HD −HD−1, vs the dimension of the ordinal patterns, for different thresholds: −0.5

(stars), −2 (inverted triangles) and −4 (pentagons).

equations and parameters are as in [32] (in our case, to model the experimental situation,

no current modulation is considered). We use the same threshold value as with the

experimental time series. We calculated data sets of more than 106 consecutive time

intervals. Results are in Figure (6). One can observe a very good agreement with the

experimental results.
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Figure 6. As Fig. (5) but the data is generated from simulations of the LK model,

with parameters as in Ref. [32].

3.4. Length of the time series

Finally, we consider the issue of the length of the time series. If the time series is

too short, the statistics to compute the probabilities of patterns is insufficient, and the

entropy is underestimated. Figure (7) displays the estimated value of the permutation
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entropy vs. the length of the time series, for different dimensions of the ordinal

patterns. Notice that the data requirements increases withD. As the number of possible

patterns of length D is equal to D!, we analyzed time series of length N = 300 Dmax

for the simulations, where Dmax is the maximum dimension considered D = 8; and

for the experiment N = 10 Dmax with D = 7. The vertical dotted line marks the

length corresponding to this criterion and demonstrates that the permutation entropy

is computed with sufficient statistics.
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Figure 7. Dependence of the normalized permutation entropy, HD/ logD!, on the

length, N , of the time-series. In panels (a),(b) the data was generated with the logistic

map and different noise levels (0.01, 0.2); in panel (c) the data is the inter-spike-

intervals, recorded experimentally (the data set is the same as that in Fig. (5) with

threshold −0.5). The solid lines represent the permutation entropy computed for the

different dimensions (D); the vertical dotted line indicates the length used in previous

figures.

4. Conclusion

We have studied the influence of noise in the permutation entropy of dynamical systems,

considering both, simulated data and experimental data. In the simulated data, when

increasing the noise strength, a transition between a almost-deterministic regime and a

noise-dominated regime was clearly observed. The noise value at which this transition

occurs is roughly independent of the size D of the ordinal pattern.

In the almost-deterministic regime, the permutation entropy grows almost linearly

or sub-linearly with D. This behavior is qualitatively similar to that of the block

entropy. However, to observe a quantitative equivalence it is often needed to analyze

extremely long time series, which can be computationally unfeasible even for relatively

simple dynamical systems. In the noise-dominated regime, the growth is faster than

linear, i.e. the differences HD − HD−1 increase with D. In principle, this fact can

be used to determine whether the dynamics is in a noise-dominated or a almost-

deterministic regime from an experimental time series where the noise strength can

not be externally tuned. However, care must be taken in interpreting the results, as

extracting a one-dimensional time series from a purely deterministic high-dimensional

time series via a Poincaré map can lead to ordinal patterns which look effectively noisy,

as we demonstrated in the example of the Rössler systems. This fact reflects the well-

known difficulties of distinguishing deterministic dynamics from noise when dealing with
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high-dimensional systems [30]. It will be interesting in the future to study the interplay

between chaotic dynamics and time-correlated noise.
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