2,451 research outputs found

    Probing the electron EDM with cold molecules

    Get PDF
    We present progress towards a new measurement of the electron electric dipole moment using a cold supersonic beam of YbF molecules. Data are currently being taken with a sensitivity of 10−27e.cm/day10^{-27}\textrm{e.cm}/\sqrt{\textrm{day}}. We therefore expect to make an improvement over the Tl experiment of Commins' group, which currently gives the most precise result. We discuss the systematic and statistical errors and comment on the future prospect of making a measurement at the level of 10−29e.cm/day10^{-29}\textrm{e.cm}/\sqrt{\textrm{day}}.Comment: 8 pages, 6 figures, proceedings of ICAP 200

    Nonadiabatic transitions in a Stark decelerator

    Full text link
    In a Stark decelerator, polar molecules are slowed down and focussed by an inhomogeneous electric field which switches between two configurations. For the decelerator to work, it is essential that the molecules follow the changing electric field adiabatically. When the decelerator switches from one configuration to the other, the electric field changes in magnitude and direction, and this can cause molecules to change state. In places where the field is weak, the rotation of the electric field vector during the switch may be too rapid for the molecules to maintain their orientation relative to the field. Molecules that are at these places when the field switches may be lost from the decelerator as they are transferred into states that are not focussed. We calculate the probability of nonadiabatic transitions as a function of position in the periodic decelerator structure and find that for the decelerated group of molecules the loss is typically small, while for the un-decelerated group of molecules the loss can be very high. This loss can be eliminated using a bias field to ensure that the electric field magnitude is always large enough. We demonstrate our findings by comparing the results of experiments and simulations for the Stark deceleration of LiH and CaF molecules. We present a simple method for calculating the transition probabilities which can easily be applied to other molecules of interest.Comment: 12 pages, 9 figures, minor revisions following referee suggestion

    Sub-barrier fusion of the oxygen isotopes: A more complete picture

    Get PDF
    We have measured the sub-barrier fusion cross sections for 16,17,18O on 16O and we present the data and the experimental method in detail. The data were analyzed with a one-dimensional potential barrier inversion model, a two-dimensional incoming wave boundary condition model, and a two-dimensional Wentzel-Kramers-Brillouin model. We find that a multidimensional model is necessary to describe the enhanced fusion cross sections in oxygen and the two-dimensional incoming wave boundary condition model suggests that a complete description of the fusion, inelastic, and elastic cross sections is possible

    Epigenetic regulatory pathways involving microRNAs may modulate the host immune response following major trauma

    Get PDF
    BACKGROUND Posttraumatic nosocomial pneumonia is a common complication resulting in significant morbidity. Trauma-induced immunocompromise is associated with an enhanced susceptibility to pneumonia. In this study, we explore the hypothesis that posttranscriptional epigenetic regulation of gene expression may be an important factor in determining this immune phenotype. We describe the pattern of production of microRNAss (miRs) and their association with nosocomial pneumonia following severe trauma. METHODS A convenience sample of 30 ventilated polytrauma patients (UKCRN ID: 5637) and 16 healthy controls were recruited. Messenger RNA and protein levels of key cytokines were quantified within 2 hours of the injury and at 24 hours. Three miRs per cytokine were then selected based on miRBase target prediction scores and quantified using polymerase chain reaction. Nosocomial pneumonia was defined using the Centers for Disease Control and Prevention definitions. RESULTS Median Injury Severity Score (ISS) was 29, and 47% of the patients developed nosocomial pneumonia. miR-125a and miR-202 decreased by 34% and 77%, respectively, immediately following injury, whereas their target, IL-10, increased messenger RNA levels 3-fold and protein levels 180 fold. Tumor necrosis factor α (TNF-α) and IL-12 gene expression decreased by 68% and 43%, respectively, following injury, and this was mirrored by a 10-fold increase in miR-181, an miR predicted to target TNF-α transcripts. Lower levels of miR-125a and miR-374b were associated with the later acquisition of hospital-acquired pneumonia. CONCLUSION Alteration in the expression of miRs with highly predicted complementarity to IL-10 and TNF-α may be an important mechanism regulating the posttraumatic immunosuppressive phenotype in intensive care unit patients. LEVEL OF EVIDENCE Retrospective observational study, level III

    Pulsed beams as field probes for precision measurement

    Full text link
    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm resolution. This new diagnostic technique is very powerful in the context of high-precision atomic and molecular physics experiments, where pulsed beams have not hitherto found widespread application.Comment: 6 pages, 12 figures. Figures heavily compressed to comply with arxiv's antediluvian file-size polic

    Entangled light from Bose-Einstein condensates

    Full text link
    We propose a method to generate entangled light with a Bose-Einstein condensate trapped in a cavity, a system realized in recent experiments. The atoms of the condensate are trapped in a periodic potential generated by a cavity mode. The condensate is continuously pumped by a laser and spontaneously emits a pair of photons of different frequencies in two distinct cavity modes. In this way, the condensate mediates entanglement between two cavity modes which leak out and can be separated and exhibit continuous variable entanglement. The scheme exploits the experimentally demonstrated strong, steady and collective coupling of condensate atoms to a cavity field.Comment: 5 pages and 5 figure

    Nanostructures in Ti processed by severe plastic deformation

    Get PDF
    Metals and alloys processed by severe plastic deformation (SPD) can demonstrate superior mechanical properties, which are rendered by their unique defect structures. In this investigation, transmission electron microscopy and x-ray analysis were used to systematically study the defect structures, including grain and subgrain structures, dislocation cells, dislocation distributions, grain boundaries, and the hierarchy of these structural features, in nanostructured Ti produced by a two-step SPD procedure-warm equal channel angular pressing followed by cold rolling. The effects of these defect structures on the mechanical behaviors of nanostructured Ti are discussed

    Zone-plate focusing of Bose-Einstein condensates for atom optics and erasable high-speed lithography of quantum electronic components

    Get PDF
    We show that Fresnel zone plates, fabricated in a solid surface, can sharply focus atomic Bose-Einstein condensates that quantum reflect from the surface or pass through the etched holes. The focusing process compresses the condensate by orders of magnitude despite inter-atomic repulsion. Crucially, the focusing dynamics are insensitive to quantum fluctuations of the atom cloud and largely preserve the condensates' coherence, suggesting applications in passive atom-optical elements, for example zone plate lenses that focus atomic matter waves and light at the same point to strengthen their interaction. We explore transmission zone-plate focusing of alkali atoms as a route to erasable and scalable lithography of quantum electronic components in two-dimensional electron gases embedded in semiconductor nanostructures. To do this, we calculate the density profile of a two-dimensional electron gas immediately below a patch of alkali atoms deposited on the surface of the nanostructure by zone-plate focusing. Our results reveal that surface-induced polarization of only a few thousand adsorbed atoms can locally deplete the electron gas. We show that, as a result, the focused deposition of alkali atoms by existing zone plates can create quantum electronic components on the 50 nm scale, comparable to that attainable by ion beam implantation but with minimal damage to either the nanostructure or electron gas.Comment: 13 pages, 7 figure
    • …
    corecore