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Abstract  

Background: Post traumatic nosocomial pneumonia is a common complication resulting in 

significant morbidity. Trauma-induced immunocompromise is associated with an enhanced 

susceptibility to pneumonia. In this study we explore the hypothesis that post-transcriptional 

epigenetic regulation of gene expression may be an important factor in determining this immune 

phenotype. We describe the pattern of production of micro RNAs (miRs) and their association 

with nosocomial pneumonia following severe trauma. 

Methods: A convenience sample of 30 ventilated polytrauma patients (UKCRN ID: 5637) and 

16 healthy controls were recruited. Messenger RNA (mRNA) and protein levels of key cytokines 

were quantified within two hours of the injury and at twenty-four hours. Three miRs per cytokine 

were then selected based on miRBase target prediction scores and quantified using polymerase 

chain reaction. Nosocomial pneumonia was defined using the Center for Disease Control and 

Prevention definitions.  

Results: Median injury severity score was 29 and 47% of patients developed nosocomial 

pneumonia. miR-125a and miR-202 decreased by 34% and 77% respectively immediately 

following injury whereas their target, IL-10, increased mRNA levels 3-fold and protein levels 

180-fold.  Tumor necrosis factor alpha (TNF-α) and IL-12 gene expression decreased by 68% 

and 43% respectively following injury and this was mirrored by a 10-fold increase in miR-181, a 

miR predicted to target TNF-α transcripts. Lower levels of miR-125a and miR-374b were 

associated with the later acquisition of hospital-acquired pneumonia.  
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Conclusions: Alteration in the expression of miRs with highly predicted complementarity to IL-

10 and TNF-α may be an important mechanism regulating the post-traumatic 

immunosuppressive phenotype in ICU patients.  

Level of Evidence: Retrospective observational study, level III. 

Key words: Epigenetics • miRNA • IL-10 • Immunosuppression • Polytrauma • Pneumonia 
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Background 

Trauma remains a frequent cause of death and results in an annual global death toll in 

excess of 6 million.
1
 Although the early mortality rates continue to fall with improved pre-

hospital care and more structured trauma systems, the medium and long-term mortality rate in 

those patients that survive to require treatment in an intensive care unit (ICU) remains high.
2
 

Severely injured patients are highly susceptible to hospital-acquired infection, particularly 

pneumonia. The development of sepsis in trauma patients is usually preceded by a characteristic 

cytokine profile
3, 4

 and is associated with a 3-fold increase in mortality.
5 

We have previously 

described a hyper-acute immune response to severe trauma, dominated by excess interleukin 10 

(IL-10) gene expression that is associated with the later development of infectious 

complications.
6
 This immune response is further characterised by features of impaired innate 

immunity and T helper cell type 1 (Th1) responses with marked reductions in tumour necrosis 

factor-alpha (TNF-α) and IL-12 gene expression.
7
 

The coordinated production of miRs represents a key epigenetic mechanism regulating 

gene expression through either transcriptional repression or messenger RNA (mRNA) 

degradation.
8
 miRs are short, single-stranded RNA molecules that bind to a target mRNA 

through sequence complementarity at the 3 prime untranslated region (3’ UTR) of the mRNA 

and are involved in the transcriptional regulation of 60% of human protein encoding genes.
9
 This 

mechanism of action has facilitated the development of bioinformatics tools that determine 

which miRs are predicted to target specific mRNAs based on their base-pair sequence.
10

  

As genetic association studies of the prototypical anti-inflammatory cytokine, IL-10, and 

sepsis susceptibility have provided inconsistent results,
11

 we hypothesised that other regulatory 

mechanisms may be of greater importance in determining gene expression following trauma. In 
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this study we assay micro RNAs (miRs) predicted to target IL-10, TNF-α and IL-12 following 

severe trauma in order to explore the hypothesis that changes in cytokine gene expression may 

be coupled with changes in the expression of those miRs predicted to target them, thereby 

suggesting a regulatory role in this setting.    
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Methods 

This study was conducted at a major tertiary referral trauma center, The Royal London 

Hospital, UK. The study was approved by the East London and City Research Ethics Committee 

(07/Q0603/29). Deferred informed written consent was obtained from each patient or their next 

of kin. 

Patient selection 

All adult trauma patients (>15 years) who met the local criteria for trauma team 

activation were eligible for enrolment into the Activation of Coagulation and Inflammation in 

Trauma (ACIT) 2 study when research personnel were present (8am to 8pm daily). ACIT2 is a 

study prospectively evaluating aspects of coagulation and inflammation in trauma patients 

(UKCRN ID: 5637).  Those patients who were transferred to the ICU following their initial 

resuscitation and treatment were eligible for inclusion to this study.  

Exclusion criteria included; arrival at hospital more than 2 hours after injury, extensive 

burn injury, HIV infection, immunosuppression secondary to chemotherapy or corticosteroids.  

In the original studies 112 patients were available for analysis.
6
 For this study, 30 patients 

remained with a suitable quality and sufficient quantity of total RNA available for miR analysis. 

Therefore, this study is the analysis of a convenience sample of patients for whom stored, viable 

samples were available from the original cohort of 112 ACIT2 patients.  

16 healthy subjects were recruited from laboratory and hospital staff to comprise a 

control group. 
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Data collection 

Extensive clinical, demographic and injury specific data were collected and pneumonia 

was defined as per CDC guidelines as previously described (Supplementary Table 1).
6, 12

 

Adjudication of infectious complications was performed in a blinded manner independently of 

the clinical team (by MJO’D and HDTT).  

Blood sampling 

Blood samples were taken on arrival in the emergency department within 2 hours of the 

trauma and at 24 hours after admission. Blood was collected into a PAXGene
TM

 blood RNA tube 

(PreAnalytix, Germany). Plasma was collected from a citrated vacutainer (Becton Dickenson, 

UK) centrifuged twice at 3,400 RPM for 10 mins and stored at -80
o
C . 

RNA quantification 

Total RNA was extracted from a whole blood sample collected in a PAXgene tube, 

reversed transcribed to cDNA and both mRNA and miR quantified using quantitative real time 

polymerase chain reaction (qRT-PCR) as previously described.
6, 13 

Relative quantification was 

calculated using the standard delta-delta methodology. Results were expressed as a normalized 

ratio of candidate gene to reference gene for both mRNA and miRNA analysis.   

Enzyme Linked Immunosorbent Assay (ELISA) 

Samples were assayed in duplicate using commercially available high sensitivity ELISAs 

(Life Technologies, Carlsbad, CA). Absorbance was measured at 450nm. 
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Selection of miRNAs 

We have previously described three genes, IL-10, TNF-α and IL-12, whose expression 

levels change following severe trauma and relate to infectious complications.
6, 7

 In order to select 

miRs that could target IL-10, TNF-α, and IL-12, a bioinformatics search was performed utilising 

the TargetScan
14

 and microRNA.org
15 

databases. Only miRs which were conserved in mammals, 

and predicted by both microRNA.org and TargetScan were selected for this study. Based on the 

mirSVR score produced by microRNA.org,
10, 15

 the top three miRs targeting IL-10, TNF-α or IL-

12 were selected for further analysis (Supplementary Table 2). mirSVR is a regression model 

that is trained on both the sequence and contextual features of the predicted miRNA:mRNA 

duplex, and mirSVR downregulation scores are calibrated to correlate linearly with the extent of 

downregulation. The predicted targets for each miR are represented as Supplemental Digital 

Content in Supplementary Table 2.  

Statistical analysis 

All statistical tests are two-sided with P-values of P<0.05 considered significant and are 

reported without correction for multiple comparisons. Differences in categorical variables were 

calculated using a Chi-squared or Fisher’s exact test as appropriate, and the Wilcoxon rank sum 

test for continuous variables. The Wilcoxon signed-rank test was used to analyse serial samples. 

Spearman’s rank correlation coefficient was used to describe correlation. Data analysis was 

performed using the JMP (version 11) statistical software (SAS, Cary, NC, USA). 
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Results 

Patients 

A total of 112 ICU patients with severe traumatic injury as an admission diagnosis were 

enrolled to ACIT2 between September 2010 and October 2012. Gene expression patterns in this 

group have been described in detail elsewhere.
6, 7, 16

 For this study, we analysed the 30 patients 

that remained with suitable quality and a sufficient quantity of RNA available for miRNA 

analysis. These patients were recruited between September 2010 and July 2012. Demographic 

and clinical details of this cohort are shown in Table 1. 14 (47%) patients developed a clinically 

defined pneumonia (Supplementary Table 1)
12

 during their hospital admission. Microbiological 

characteristics of these infections are outlined in Table 2. Pneumonia occurred a median of 3 

(IQR 2.75-6.25) days following hospital admission. 6 (20%) patients died prior to hospital 

discharge. 16 healthy control samples were also collected. Median age (31.5, IQR 28.25-37) and 

sex distribution (62.5% male) in the control group was similar to that observed in the study 

patients.  

Changes in miRNAs expression following to severe trauma 

IL-10 mRNA levels increased 3-fold at baseline when compared to healthy controls (P 

<0.0001) and then increased a further 4.5-fold at 24 hours (P<0.0001; Figure 1A). IL-10 protein 

levels were also markedly increased at baseline when compared to healthy controls (P<0.0001; 

Figure 1B). At 24 hours, IL-10 protein levels fell compared to baseline (P<0.05), but remained 

higher than IL-10 protein levels in healthy controls (P<0.0001).  The top three miRs predicted to 

target IL-10 mRNA were then selected (see methods) and quantified. Levels of miR-202 

decreased immediately following trauma (P<0.0001 controls versus baseline) and then increased 
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between baseline and 24 hours (P=0.0035). However, levels at 24 hours remained less than 

controls levels (P=0.009; Figure 1C). Levels of miR-125a decreased immediately following 

trauma (P=0.02 controls versus baseline) and were then unchanged at 24 hours (Figure 1D). 

Levels of miR-374b immediately following trauma were not different from controls and were 

unchanged at 24 hours. 

TNF-α mRNA levels decreased immediately following trauma when compared to 

controls (P<0.0001) and were then unchanged at 24 hours (Figure 2A). TNF-α protein levels 

were below the level of detection in the majority of patients and controls. Three miRNAs 

predicted to target TNF-α mRNA were then analysed. Levels of miR-181 increased immediately 

following trauma (P<0.0001) and then increased further at 24 hours (P=0.046; Figure 2B). 

Levels of miR-454 decreased immediately following trauma (P=0.0055, control versus baseline) 

and levels then increased at 24 hours (P=0.02, 24 hours versus baseline; Figure 2C). Levels of 

miR-301a were undetectable in all patient and control samples.  

IL-12 mRNA levels decreased immediately following trauma when compared to controls 

(P=0.0005) and then decreased further at 24 hours (P<0.0001; Figure 3A). IL-12 protein levels 

were below the level of detection in the majority of patients and controls. Three miRNAs 

predicted to target IL-12 mRNA were then analysed.  Levels of miR-410 were unchanged 

immediately following trauma when compared to controls and were also unchanged at 24 hours 

(Figure 3B). Levels of miR-21 were decreased immediately following trauma in comparison to 

controls (P=0.0035) and then increased over the first 24 hours (P=0.045) such that levels at 24 

hours were not different from control values (Figure 3C). miR-590-5p was undetectable in the 

majority of patient and control samples analysed. 
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None of the miRNAs studied were associated with the ISS or the degree of shock as 

determined using the admission base deficit value as a surrogate or with the volume of 

crystalloid or colloid infused over the first 24 hours. Associations were observed between the 

number of units of packed red blood cells (PRBCs) transfused over the initial 24 hours and miR-

202 levels on admission (P=0.003) and at 24 hours (P<0.0001). The number of units of both 

platelets (P=0.0005) and FFP (P<0.0001) transfused over the initial 24 hours were also 

associated with miR-202 levels at 24 hours. Supplementary Table 3 presents the univariate 

associations between miRNAs and other clinical and demographic variables.   

miRNA expression and pneumonia 

Lower levels of miR-125a at 24 hours (P=0.015, Figure 4A) and lower levels of miR-

374b at baseline (P=0.005, Figure 4B) were associated with the later onset of pneumonia. No 

other miRNAs were associated with pneumonia. Pneumonia was not associated with clinical, 

demographic or injury-specific variables (Table 1).  

 In this cohort no statistically significant association was observed between IL- 10 levels 

and pneumonia (Figure 4C). 

Power analysis 

In the case of variables where no temporal change was detected a retrospective power 

analysis was performed using the mean and standard deviation obtained from the baseline values. 

For miR-374b and miR-410 the study was powered at 80% in order to detect a 35% and 70% 

difference respectively between miR levels in control samples and in the baseline trauma sample. 

In the case of miR-125a and TNFα the study was powered at 80% in order to detect a 58% and 

26% change respectively in levels between baseline and 24 hours. 
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Discussion 

In this study we have assayed the post-traumatic expression levels of a panel of miRs in 

order to determine whether their pattern of expression is consistent with a possible regulatory 

role in the development of the immunocompromised phenotype observed following severe 

trauma in ICU patients. Our analysis demonstrates that miRs predicted to target the prototypical 

anti-inflammatory cytokine, IL-10 (miR-125a and miR-202) decrease following severe trauma 

whilst IL-10 mRNA and protein levels increase. Contrasting this is the decrease in gene 

expression of key pro-inflammatory cytokines: TNF-α, essential for a robust innate immune 

response and IL-12, a Th1 polarising cytokine. A miR predicted to target TNF-α, miR-181, 

demonstrates a reciprocal response and increases markedly over the initial 24 hours following 

severe trauma. Furthermore, lower levels of two of the miRs predicted to target IL-10 mRNA 

were associated with the acquisition of hospital acquired pneumonia. 

miRs regulate gene expression through RNA interference. The seed region at residue 2 to 

7 of the miR binds to the 3’ UTR of the target mRNA which either causes degradation of the 

mRNA transcript or impairs efficient translation.
17

 Therefore, in order to infer a possible 

regulatory role in the inflammatory response to severe trauma we hypothesised that miRs and 

their predicted target genes may change in a reciprocal manner. In our experiments we could 

successfully amplify miR transcript in 7 of the 9 candidates. All three assays used to quantify 

miRs that target IL-10 mRNA transcripts amplified successfully and 2 of these, miR-202 and 

miR-125a, changed in a manner that was reciprocal to IL-10 gene expression. It is interesting 

that although mRNA levels of IL-10 continue to increase from baseline to 24 hours, the 

associated protein product increases in tandem only immediately following severe trauma and 

then falls slightly at 24 hours. It is biologically plausible that the continued increase in miR-202 
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and miR-125a over 24 hours could partially account for the failure of increasing levels of IL-10 

mRNA to translate into a viable protein product. In the case of TNF-α, two of the three miRs 

predicted to target transcripts amplified and one of these changed in a fashion that was reciprocal 

to the mRNA changes following severe trauma. In the case of IL-12, neither of the two miRs that 

amplified changed in a reciprocal pattern to the IL-12 mRNA levels. Further analysis of the 

potential influence of miRs on translation to the TNF-α and IL-12 protein product was limited by 

the sensitivity of the protein assay in clinical samples.     

The expression levels of a number of the candidate miRs suggested by the bioinformatics 

tools did not change following severe trauma in a pattern that was suggestive of a regulatory role 

in this setting. Although some of these miRs have previously been implicated in immune 

disorders,
18-20

 we could not infer a similar immune modulating role in ICU patients admitted 

following severe trauma. However, regulation by miRs is known to be cell state and type specific 

and our methodology of extracting RNA from whole blood may miss important interactions at a 

cellular level. In addition, the strategy of searching for reciprocal changes in mRNA and miR 

levels will not describe a regulatory function mediated through impaired translation as opposed 

to mRNA destruction. Particularly in the case of miR-410, this study may be underpowered to 

detect smaller changes in expression levels that may yet be of biological significance.    

There remains a paucity of in vivo human data on the role of miR regulation of gene 

expression following severe trauma. One small sequencing study described 69 miRs that were 

differentially expressed between healthy controls and trauma patients requiring blood 

transfusion.
21

 Of particular interest was their finding that miR-181 may have a regulatory role in 

the TLR signalling pathway. This may be consistent with the large increase in miR-181 

expression observed in our cohort in conjunction with the decrease in TNF-α gene expression. 
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To our knowledge there are currently no other in vivo data describing miR production following 

severe traumatic injury in humans.  

We also observed an association between decreased levels of two of the miRs that were 

predicted to target IL-10: miR-125a and miR-374b, and the later occurrence of nosocomial 

pneumonia. Whilst pneumonia was diagnosed earlier and more frequently in this cohort than in 

other trauma cohorts
3
 the mean ISS recorded our patient cohort was also higher proportionately 

higher (31 vs. 19). It is plausible that decreased levels of these miRs could promote excess gene 

expression following severe trauma and thereby increase susceptibility to pneumonia. Although 

this study may be underpowered to detect an association between IL-10 levels and pneumonia 

we have previously reported this association in a larger cohort
7
 and suggested that trauma-

induced IL-10 production induced an immunosuppressive environment which increased 

susceptibility to nosocomial infections. Here, we suggest that this response may be regulated 

through miR production. 

However, the observations presented here should be viewed as hypothesis generating.  

There are clear limitations to the utilisation of an algorithm-based program to predict mRNA-

miR interactions, due to the complex interactions between miRs and their target and the 

redundancy in terms of the numerous putative miR recognition sites in mRNAs. Furthermore, the 

relatively low sample size increases the possibility of a type ΙΙ error, particularly in relation to 

the association between age and pneumonia.  

 In this study we have identified three miRs, miR-202, miR-125a and miR-181, whose 

pattern of expression suggest that they may play a regulatory role in the immunocompromised 

phenotype that is observed following severe trauma and two miRs, miR-125a and miR-374b, that 
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were associated with the later acquisition of hospital acquired pneumonia. Additional studies will 

be required to validate these results and clarify the mechanisms involved. 
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Table 1. Patient characteristics 

 Pneumonia    

(n=14) 

No Pneumonia 

(n=16) 

P value   All Patients   

(n=30) 

ACIT2 

(n=112) 

Age, median (IQR) 48 (34-59) 33 (26-43) 0.067 41 (30-53) 41 (29- 57) 

Male Sex, n (%) 11 (79%) 12 (75%) 0.490 23 (77%) 89 (79%) 

ISS, median (IQR) 31 (23-44) 25 (19-43) 0.465 29 (20-44) 29 (20-36) 

AIS/Head & Neck, median (IQR) 2.5 (0-3) 0.5 (0-4) 0.776 1.5 (0-4) 3 (0-4) 

AIS/Face, median (IQR) 0 (0-1) 0 (0-2) 0.411 0 (0-2) 0 (0-1) 

AIS/Thorax, median (IQR) 4 (3-4) 3 (1-4) 0.097 4 (3-4) 3 (2-4) 

AIS/Abdomen & Pelvis, median (IQR) 2 (1-3) 2 (0-3) 0.518 2 (0-3) 0.5 (0-3) 

AIS/Extremity, median (IQR) 2 (1-3) 2 (0-3) 0.763 2 (0-3) 2 (0-3) 

AIS/Tissue, median (IQR) 0 (0-0) 0 (0-0) 0.523 0 (0-0) 0 (0-0) 

TBI, n (%) 5 (36%) 7 (44%) 0.722 12 (40%) 56 (50%) 

Blunt Injury, n (%) 13 (93%) 14 (88%) >0.99 27 (90%) 101 (90%) 

Penetrating Injury, n (%) 1 (7%) 2 (13%) >0.99 3 (10%) 11 (10%) 

Admission Base Deficit, median (IQR) mEq/L 6.7 (4.2-11.9) 3.7 (0.9-7.9) 0.212 5 (2.5-9.1) 4.1 (1.9-7.3) 

Admission Lactate, median (IQR) mmol/L 3.6 (2.6-5.9) 2.9 (2.1-6.1) 0.452 3.4 (2.4-5.4) 3.2 (1.6-5) 

PRBC, median (IQR) (Units, pre-0hr sample) 0 (0-1) 0 (0-1) 0.901 0 (0-1) 0 (0-0) 

Crystalloid, median (IQR) (ml, pre-0hr sample) 400 (0-813) 375 (0-500) 0.367 400 (0-563) 100 (0-500) 

HTS, median (IQR) (ml, pre-0hr sample) 0 (0-0) 0 (0-0) 0.833 0 (0-0) 0 (0-0) 

PRBC, median (IQR) (Units, 1st 24hr) 4 (3-9) 3 (0-11) 0.543 4 (1-9) 4 (0-8) 

Massive Transfusion, n (%) (10units/24hr)  3 (21%) 4 (25%) 0.820 7 (23%) 21 (19%) 

Fresh Frozen Plasma, median (IQR) (Units, 1st 24hr) 5 (0-10) 1 (0-8) 0.543 3 (0-9) 0 (0-6) 

Platelets, median (IQR) (Pools, 1st 24hr) 0 (0-2) 0 (0-1) 0.926 0 (0-1) 0 (0-1) 

Cryoprecipitate, median (IQR) (Pools, 1st 24hr) 0 (0-2) 0 (0-2) >0.99 0 (0-2) 0 (0-2) 

Crystalloid, median (IQR) (ml, 1st 24hr) 3100 (1795-5339) 2400 (1625-5763) 0.519 2775 (1795-5550) 2907 (1995-4518) 

Colloid, median (IQR) (ml, 1st 24hr) 1500 (688-3000) 1375 (563-2000) 0.491 1500 (688-2000) 1100 (489-2000) 

HTS, median (IQR) (ml, 1st 24hr) 0 (0-88) 0 (0-0) 0.687 0 (0-0) 0 (0-0) 

Ventilator Days, median (IQR)  13 (5-21) 3 (1-7) 0.018 6 (2-14) 4 (1-11) 

MODS, n (%) 9 (64%) 6 (38%) 0.157 15 (50%) 43 (38%) 

28 day mortality, n (%) 2 (14%) 4 (25%) 0.490 6 (20%) 19 (17%) 

 

Data are expressed as median and interquartile range or absolute counts with percentages in parenthesis. The ACIT2 column represents data from the full cohort of patients from 

which the patients in this study originated and are described in detail elsewhere 6. These data are provided for the purposes of comparison. AIS, Abbreviated injury score. HTS, 

Hypertonic Saline. ISS, injury severities score. MODS, multiple organ dysfunction syndrome: This was defined, using the SOFA score, as the presence of ≥2 organs from the 

SOFA score being ≥3 in 24 hours. PRBC, packed red blood cells. TBI, traumatic brain injury (AIS Head and Neck ≥3).6 

 

 



 

 

23 

Table 2. Pneumonia microbiological characteristics 

Organism Number of Episodes 

Staphylococcus aureus (MSSA)  6 

Candida albicans 5 

Klebsiella pneumonia  4 

Haemophilus Influenza 4 

Enterobacter cloacae 3 

Escherichia coli 3 

Acinetobacter baumannii 3 

Klebsiella oxytoca 2 

Staphylococcus aureus (MRSA) 1 

Serratia marcescens 1 

Pseudomonas aeruginosa 1 

Pneumonia was diagnosed based on CDC criteria. Listed above, in descending order of frequency are all the organisms 

cultured and reported in a semi-quantitative manner from non bronchoscopic lower respiratory tract aspirates of patients 

diagnosed with pneumonia that, in conjunction with the microbiologists, were deemed plausibly to play a pathogenic role in 

the pneumonic process. A number of organisms were cultured from individual patients hence the number of positive cultures 

is in excess of the number of episodes of pneumonia. Candida albicans was never grown as the sole organism in any patient. 

MRSA, methicillin -resistant staphylococcus aureus. MSSA, methicillin -sensitive staphylococcus aureus. 
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Figure 1. IL-10 mRNA levels, IL-10 protein levels and levels of miRs targeting IL-10; following severe 

trauma: Each graph represents levels in healthy controls, trauma patients at 0hr (admission) and 24hr. Graph A, IL-

10 mRNA in whole blood; Graph B, IL-10 protein in plasma; Graph C, IL-10 regulating miR-202; Graph D, IL-10 

regulating miR-125a. Graphs represent median and interquartile range. Graphs A, C and D are expressed as a 

relative quantification ratio between the candidate and the reference genes. Graph B is expressed as detected 

concentration via ELISA (pg / ml). P-values: *<0.05; **<0.01; ***<0.001; ****0.0001. 
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Figure 2. TNF- mRNA levels and levels of miRs targeting TNF-; following severe trauma: Each graph 

represents levels in healthy controls, trauma patients at 0hr (admission) and 24hr.  Graph A, TNF- mRNA in whole 

blood; Graph B, TNF- regulating miR-181; Graph C, TNF- regulating miR-454. Graphs represent median and 

interquartile range. Graphs A-C are expressed as a relative quantification ratio between the candidate and the 

reference genes. P-values: *<0.05; **<0.01; ***<0.001; ****0.0001. 
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Figure 3. IL-12 mRNA levels and levels of miRs targeting IL-12; following severe trauma: Each graph 

represents levels in healthy controls, trauma 0hr (admission) and 24hr. Graph A, IL-12 mRNA; Graph B, IL-12 

regulating miR-410; Graph C, IL-12 regulating miR-21. Graphs represent median and interquartile range. Graphs A-

C are expressed as a relative quantification ratio between the candidate and the reference genes. P-values: *<0.05; 

**<0.01; ***<0.001; ****0.0001. 
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Figure 4. Associations between miRs targeting IL-10, IL-10 protein and pneumonia: Each graph represents 

mediator levels in severely injured patients developing pneumonia, those remaining free of pneumonia and healthy 

controls. Graph A, miR125a assayed at 24hr in pneumonia vs non pneumonia patients and normal healthy controls; 

Graph B, miR374b assayed at 0hr (admission) in pneumonia vs non pneumonia patients and normal healthy 

controls; Graph C, IL-10 plasma quantified at 24hr in pneumonia vs non pneumonia patients and normal healthy 

controls. Graphs represent median and interquartile range. Graphs A & B are expressed as a relative quantification 

ratio between the candidate and the reference genes. Graph C is expressed as detected concentration via ELISA (pg / 

ml). P-values: *<0.05; **<0.01; ***<0.001; ****0.0001. 
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Supplementary Table 1. Criteria used for defining pneumonia  

 

Radiology Two or more serial chest radiographs with at least 1 of the following: 

 New or progressive and persistent infiltrate, consolidation or 

cavitation. 

 

Signs & Symptoms For any patient, at least 1 of the following: 

 Fever (>38°C or >100.4°F) with no other recognized cause. 

 Leukopenia (<4000 WBC/mm3) or leukocytosis (≥12,000 

WBC/mm
3
). 

 For adults ≥70 years old, altered mental status with no other 

recognized cause. 

 

And at least 2 of the following: 

 New onset of purulent sputum or change in character of sputum 

or increased respiratory secretions or increased suctioning 

requirements. 

 New onset or worsening cough, or dyspnea, or tachypnea. 

 Rales or bronchial breath sounds. 

 Worsening gas exchange (e.g., O2 desaturations [eg, PaO2/FiO2 

≤240], increased oxygen requirements, or increased ventilator 

demand). 

 

Pneumonia can be diagnosed either by radiological criteria or by signs and symptoms. These criteria have been taken from 

reference 12. 

 

 



 

 

29 

Supplementary Table 2. miR targets 

 

Gene miRNA 
mirSVR 

Score 
Sequence Alignment 

IL10 

  

hsa-miR-

374b 

-1.3235 Position 205-212 of IL10 3' UTR 

 

hsa-miR-374b 

5'   ...UAGAAAGAAGCCCAAUAUUAUAA... 

                       |||||||  

3'       GUGAAUCGUCCAACAUAAUAUA  

 

hsa-miR-

125a-3p 

-1.3235 Position 235-241 of IL10 3' UTR 

 

hsa-miR-125a-3p 

 

5'       ...CAAUAUUUAUUAUUUUCACCUGU... 

                           |||||||  

3'           CCGAGGGUUCUUGGAGUGGACA  

 

hsa-miR-

202 

-1.0964 Position 139-146 of IL10 3' UTR 

 

hsa-miR-202 

 

5' ...UAUUUAUUACCUCUGAUACCUCA... 

                     |||||||  

3'       AAGGGUACGGGAUAUGGAGA  

 

TNFα 

 

hsa-miR-

181a 

-1.277 Position 500-507 of TNF 3' UTR 

 

hsa-miR-181a 

 

5' ...UUAUUUAUUUACAGA--UGAAUGUA... 

                ||||   |||||||  

3'      UGAGUGGCUGUCGCAACUUACAA 

hsa-miR-

301a 

-1.1996 Position 451-457 of TNF 3' UTR 

 

hsa-miR-301a 

 

5'   ...UCCCUCUAUUUAUGUUUGCACUU... 

                       |||||||  

3'      CGAAACUGUUAUGAUAACGUGAC 

hsa-miR-

454 

-1.1996 Position 451-457 of TNF 3' UTR 

 

hsa-miR-454 

 

5' ...UCCCUCUAUUUAUGUUUGCACUU... 

                     |||||||  

3'    UGGGAUAUUCGUUAUAACGUGAU 

IL12 

 

hsa-miR-

410 

-1.3439 Position 326-332 of IL12 3' UTR 

 

hsa-miR-410 

 

5' ...UUUUAAAAUAUUUAUUUAUAUAA... 

                     ||||||   

3'     UGUCCGGUAGACACAAUAUAA 

hsa-miR-

21 

-1.3231 Position 256-263 of IL12 3' UTR 

 

hsa-miR-21 

 

5'  ...GAAGGGCAAAUAUUUAUAAGCUA... 

                      |||||||  

3'      AGUUGUAGUCAGACUAUUCGAU 

hsa-miR-

590-5p 

-1.3231 Position 256-263 of IL12A 3' UTR 

 

hsa-miR-590-5p 

 

5' ...GAAGGGCAAAUAUUUAUAAGCUA... 

                     |||||||  

3'     GACGUGAAAAUACUUAUUCGAG 

miRNAs predicted to target cytokines of interest based on microrna.org and TargetScan databases. The top 3 miRs based on mirSVR scores 

were selected for further analysis.  

 

 

 

 

 

http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-374b
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-125a-3p
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-202
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-181a
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-301a
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-454
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-410
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-21
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=hsa-miR-590-5p
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Supplementary Table 3. Univariate associations between miRNAs and clinical, demographic and injury specific variables. 

 

 miR125a 0HR miR125a 24HR miR202 0HR miR202 24HR miR374 0HR miR374 24HR 

Age 0.63, 0.0005 0.2, 0.04 0.11, 0.06 0.33, 0.02 0.13, 0.05 0.07, 0.08 

Scene SBP 0.46, 0.02 0.81, 0.002 0.19, 0.07 0.89, 0.0008 0.66, 0.008 0.35, 0.04 

ED SBP 0.33, 0.03 0.46, 0.02 0.09, 0.10 0.46, 0.02 0.32, 0.03 0.37, 0.03 

BE 0HR 0.96, 0.00008 0.16, 0.07 0.31, 0.03 0.58, 0.01 0.65, 0.008 0.87, 0.001 

ISS 0.33, 0.03 0.73, 0.004 0.38, 0.02 0.40, 0.02 0.82, 0.001 0.87, 0.001 

Sex* 0.6 0.85 0.07 0.09 0.68 0.64 

Scene GCS 0.03, 0.15 0.18, 0.06 0.28, 0.04 0.58, 0.01 0.61, 0.009 0.50, 0.01 

PRBC (units) in 24H 0.53, 0.01 0.65, 0.007 0.003, 0.28 0.004, 0.26 0.08, 0.10 0.12, 0.09 

FFP (units) in 24H 0.39, 0.02 0.79, 0.002 0.05, 0.13 <0.0001, 0.47 0.005, 0.25 0.03, 0.18 

Platelets (pools) in 24H 0.37, 0.02 0.75, 0.003 0.06, 0.12 0.0005, 0.36 0.04, 0.14 0.05, 0.14 

Crystalloid (ml) in 24H 0.90, 0.005 0.42, 0.02 0.85, 0.001 0.82, 0.001 0.69, 0.005 0.21, 0.06 

Colloid (ml) in 24H 0.63, 0.008 0.49, 0.01 0.47, 0.01 0.04, 0.14 0.01, 0.20 0.03, 0.17 

AIS Head & Neck 0.24, 0.04 0.55, 0.01 0.80, 0.002 0.08, 0.10 0.08, 0.10 0.50, 0.01 

AIS Face 0.73, 0.004 0.37, 0.02 0.66, 0.007 0.64, 0.007 0.42, 0.02 0.65, 0.008 

AIS Thorax 0.01. 0.20 0.95, 0.0001 0.45, 0.02 0.86, 0.0001 0.65, 0.007 0.52, 0.01 

AIS Abdomen & Pelvis 0.15, 0.07 0.96, 0.0001 0.76, 0.003 0.54, 0.01 0.19, 0.06 0.43, 0.02 

AIS Extremity 0.19, 0.06 0.49, 0.01 0.14, 0.07 0.24, 0.04 0.06, 0.12 0.13, 0.08 

Blunt vs. Penetrating 0.75 0.91 0.05 0.55 0.56 1 

When two numbers as presented in a cell these represent an r
2
 value and associated P-value. When one number is present this represents the p value of a Wilcoxon 

Test between two categorical variables.  AIS, Abbreviated injury score. BE, Base Excess. ED, Emergency Department. FFP, Fresh Frozen Plasma. GCS, Glasgow 

Coma Score. ISS, Injury Severity Score. PRBC, packed red blood cells. SBP, Systolic Blood Pressure. 

  

 

 

 

 

 

 

 


