358 research outputs found

    Beyond the poor man's implementation of unconditionally stable algorithms to solve the time-dependent Maxwell Equations

    Get PDF
    For the recently introduced algorithms to solve the time-dependent Maxwell equations (see Phys.Rev.E Vol.64 p.066705 (2001)), we construct a variable grid implementation and an improved spatial discretization implementation that preserve the property of the algorithms to be unconditionally stable by construction. We find that the performance and accuracy of the corresponding algorithms are significant and illustrate their practical relevance by simulating various physical model systems.Comment: 18 pages, 16 figure

    Reshaping Global Change Science for the 21st Century: Young Scientists’ Perspectives

    Get PDF
    Humanity is facing unprecedented environmental, social, and economic challenges. We ask what the role of the global science community should be in tackling these challenges. Increased awareness of the social context in which science is being produced; acceptance of the importance of controversy; and reflection around normative assumptions underlying research are needed. To help solve humanity’s grand challenges scientists need to move towards a transdisciplinary view of science where knowledge emerges from a collaborative environment and where young scientists are trained to work across disciplinary boundaries and engage with policy communities

    Re-shaping Sustainability Science for the 21st Century: Young Scientists’ Perspectives

    Get PDF
    Humanity is facing unprecedented environmental, social and economic challenges. We ask what the role of the sustainability science community should be in tackling these challenges, focusing particularly on young scientists’ perspectives on the issue. On the basis of a questionnaire and a workshop with young scientists, we identify four major challenges facing humanity and develop three guidelines for sustainability science that seeks to address them. Results show that to help address humanity’s grand challenges, sustainability scientists need to move towards a trans-disciplinary system view of science and sustainability science problems. According to this view knowledge emerges from a collaborative and transdisciplinary environment and young scientists are trained to work across disciplinary boundaries and engage with policy communities

    Critical temperature and density of spin-flips in the anisotropic random field Ising model

    Get PDF
    We present analytical results for the strongly anisotropic random field Ising model, consisting of weakly interacting spin chains. We combine the mean-field treatment of interchain interactions with an analytical calculation of the average chain free energy (``chain mean-field'' approach). The free energy is found using a mapping on a Brownian motion model. We calculate the order parameter and give expressions for the critical random magnetic field strength below which the ground state exhibits long range order and for the critical temperature as a function of the random magnetic field strength. In the limit of vanishing interchain interactions, we obtain corrections to the zero-temperature estimate by Imry and Ma [Phys. Rev. Lett. 35, 1399 (1975)] of the ground state density of domain walls (spin-flips) in the one-dimensional random field Ising model. One of the problems to which our model has direct relevance is the lattice dimerization in disordered quasi-one-dimensional Peierls materials, such as the conjugated polymer trans-polyacetylene.Comment: 28 pages, revtex, 4 postscript figures, to appear in Phys. Rev.

    Optimization of Immunoglobulin Substitution Therapy by a Stochastic Immune Response Model

    Get PDF
    Background: The immune system is a complex adaptive system of cells and molecules that are interwoven in a highly organized communication network. Primary immune deficiencies are disorders in which essential parts of the immune system are absent or do not function according to plan. X-linked agammaglobulinemia is a B-lymphocyte maturation disorder in which the production of immunoglobulin is prohibited by a genetic defect. Patients have to be put on life-long immunoglobulin substitution therapy in order to prevent recurrent and persistent opportunistic infections. Methodology: We formulate an immune response model in terms of stochastic differential equations and perform a systematic analysis of empirical therapy protocols that differ in the treatment frequency. The model accounts for the immunoglobulin reduction by natural degradation and by antigenic consumption, as well as for the periodic immunoglobulin replenishment that gives rise to an inhomogeneous distribution of immunoglobulin specificities in the shape space. Results are obtained from computer simulations and from analytical calculations within the framework of the Fokker-Planck formalism, which enables us to derive closed expressions for undetermined model parameters such as the infection clearance rate. Conclusions: We find that the critical value of the clearance rate, below which a chronic infection develops, is strongly dependent on the strength of fluctuations in the administered immunoglobulin dose per treatment and is an increasing function of the treatment frequency. The comparative analysis of therapy protocols with regard to the treatment frequency yields quantitative predictions of therapeutic relevance, where the choice of the optimal treatment frequency reveals a conflict of competing interests: In order to diminish immunomodulatory effects and to make good economic sense, therapeutic immunoglobulin levels should be kept close to physiological levels, implying high treatment frequencies. However, clearing infections without additional medication is more reliably achieved by substitution therapies with low treatment frequencies. Our immune response model predicts that the compromise solution of immunoglobulin substitution therapy has a treatment frequency in the range from one infusion per week to one infusion per two weeks

    Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes

    Full text link
    Electron scattering rates in metallic single-walled carbon nanotubes are studied using an atomic force microscope as an electrical probe. From the scaling of the resistance of the same nanotube with length in the low and high bias regimes, the mean free paths for both regimes are inferred. The observed scattering rates are consistent with calculations for acoustic phonon scattering at low biases and zone boundary/optical phonon scattering at high biases.Comment: 4 pages, 5 figure
    • …
    corecore