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PHYSICAL REVIEW E, VOLUME 65, 066705
Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations

J. S. Kole* M. T. Figge] and H. De Raedt
Centre for Theoretical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4,
NL-9747 AG Groningen, The Netherlands
(Received 12 December 2001; published 26 June 2002

For the recently introduced algorithms to solve the time-dependent Maxwell equflioBs Kole, M. T.
Figge, and H. De Raedt, Phys. Rev6g 066705(2001) ], we construct a variable grid implementation and an
improved spatial discretization implementation that preserve the exceptional property of the algorithms to be
unconditionally stable by construction. We find that the performance and accuracy of the corresponding
algorithms are significant and illustrate their practical relevance by simulating various physical model systems.

DOI: 10.1103/PhysReVvE.65.066705 PACS nuni)er02.60.Cb, 03.50.De, 41.20.Jb

I. INTRODUCTION proved spatial discretization. Our conclusions are given in
Sec. VL.
In a recent paper, we introduced a family of algorithms to
solve the time-dependent Maxwell equati¢h$ Salient fea- [I. UNCONDITIONALLY STABLE ALGORITHMS TO
tures of these algorithms include the rigorously provable un- SOLVE MAXWELL EQUATIONS

cqnditiongl stabilit'y ford—dirngpsional systemsq_(:1,2,3) We consider a-dimensional model system of EM fields
with spatially varying permittivity and permeability, as well in a medium with spatially varying permittivity and/or per-

as the exa}ct congervation of the energy density of the EEIE3(?1'1eability, surrounded by a perfectly conducting box. In the
tromagnetidEM) fields. Furthermore, we have demonstratedapgence of free charges and currents, the EM fields in such a

that without affecting the unconditional stability of the algo- system satisfy the Maxwell equatiof]
rithms the order of accuracy in the time integration can be

systematically increased. An important aspect that has not d 1 1

been considered in our earlier wdrk] concerns the effect of ot H=- ;V XE and EE: gV xH, @
the discretization of space on the accuracy of the algorithms.

Previously, we employed only the most simple spatial dis- diveE=0 and divuH=0, 2

cretization, namely, the central-difference scheme on a Car-

tesian grid with a constant mesh sigtl. We refer to this  Where H=(H,(r,t),Hy(r,t),H,(r,t))T and E=(E(r.t),
spatial discretization scheme as imple spatial implemen- Ey(r:1).E,(r,1))" denote, respectively, the magnetic field
tation. Many numerical simulations of realistic physical sys- a"d the electric field vectors. The permeability and the per-
tems require algorithms with a more accurate spatial discretiMittivity are given byu=pu(r) ande=e(r). For simplicity
zation and a more flexible spatial grid for an optimal use of°f notation, we will omit the spatial dependence on
computer resource€CPU time and computer memoryin =(x,Y,2) ' unless this leads to ambiguities. On the surface of

the present paper we show that implementing a fourth-ordetthe perfectly conducting box the EM fields satisfy the bound-

accurate approximation of the spatial derivatives and a spaery conditions 2]

tial grid of variable mesh sizes preserve the unconditional nXE=0 and n-H=0, (3)

stability of the algorithms. We simulate various physical

model systems using these proposed implementations with n denoting the vector normal to a boundary of the sur-

demonstrate the significant improvement with respect to thé&ce. The conditions, Eq$3), assure that the normal com-

required computer resources in the computation of eigenponent of the magnetic field and the tangential components

mode spectra and to study systematically the temporal anof the electric field vanish at the boundd&f. Some impor-

spatial accuracy of the algorithms. tant symmetries of the Maxwell Eg&l) and(2) can be made
Our presentation is organized as follows: We recapitulatexplicit by introducing the fields

the theory of constructing unconditionally stable algorithms

to solve the time-dependent Maxwell equations in Sec. Il and X(t)=uH(t) and Y(t)=VeE(). 4

describe the basic properties of the simple spatial implemer|

tation in Sec. Ill. Then, in Secs. IV and V, we present the

implementation of, respectively, the variable grid and the im-

n terms of the fieldsX(t) and Y(t), the time-dependent
Maxwell equationg1) read

1 1
——=VX—=Y(t
*Email address: j.s.kole@phys.rug.nl a [ X(1) \/; \/; ® X(t)
"Email address: m.t.figge@phys.rug.nl alym) | 1 =H Y’ 5
*Email address: h.a.deraedt@phys.rug.nl; — VX—X(t)
http://rugth30.phys.rug.nl/compphys \/g \/;
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where the operatdk is given by Uy(r)=e™1...e™p (10
1 1 might be a good approximation 1d(7) if 7 is sufficiently
0 _\/_—VX7 small. In fact, it can be shown thal(r) and U(7) are
H= K € . (6)  identical up to first order irr [7]. Most importantly, if all the
1 1 H; are real and skew symmetrit),(7) is orthogonal by
EVX\/_— 0 construction. Therefore, by construction, a numerical scheme
K based on EQq.(10) will be unconditionally stable. The
Writing W(t) = (X(t),Y(1))7, Eq. (5) becomes product-formula approach provides simple, systematic pro-
cedures to improve the accuracy of the approximation to
d U(7) without changing its fundamental symmetries. For ex-
V(O =HE(). (7)  ample, the orthogonal matrix
It is easy to show thatH is skew symmetric, i.e., Uy(7)=U1(—7/2)U(7/2)
7;(T= —TH, ,with respect to the inner productWw|w’) — M2, . eHal2emHiIgTHA2 . eHy2  (17)
=[yW¥'-W¥'dr, whereV denotes the volume of the enclos-
ing box. The formal solution of Ed(7) is given by is identical toU(7) up to second order im [5,6]. Suzuki's

fractal decomposition approa€h] gives a general method to
construct higher-order approximations based Wy(7) or
U,(7). A particularly useful approximation, which is identi-
cal toU(7) up to fourth order inr, is given by[5]

W(t)=U(t)W(0)=e""W(0), ®)

whereW(0) represents the initial state of the EM fields. The
operatorl((t) =e'”* determines the time evolution. By con-
struction ||‘I’(t)||2=<‘1’(t)|‘1’(t)> = fV[SEZ(t) + /.LHz(t)]dl’, U4(7)=U,(ar)Uy(arnU,((1—4a)r)U,(ar)Uy(ar),
relating the length of¥(t) to the energy densityw(t)

= sE2(t)+ wH2(t) of the EM fields[2]. As L(t)T=(—t) (12)
=U " Ht)y=e " it follows that (U(t)W(0)|L(t)W¥(0))  wherea=1/(4—4Y3). From Eqgs.(10—(12) it follows that,
=(W(t)|W(t))=(W(0)|W¥(0)). Hence the time-evolution in practice, an efficient implementation of a scheme based on
operatorl4(t) is an orthogonal transformation, rotating the U(7) is all that is needed to construct the higher-order al-
vector W(t) without changing its lengtfj ¥|. In physical  gorithms, Eqs(11) and(12). The approximationt) ,(7) are
terms this means that the energy density of the EM fieldsdentical to the exact time-evolution operatd(r) up tonth
does not change with time, as expected on physical groundsder in~ and have proven to be very useful in many appli-
[2]. cations[4,6—15. They turn out to be equally useful for solv-

A numerical procedure that solves the time-dependening the time-dependent Maxwell equatidig. In particular,
Maxwell equations necessarily starts by discretizing the spat can be shown that the difference between the exact EM
tial derivatives. This maps the continuum problem describedield vector W(t)=U(t)W¥(0) and the approximate one,
by H onto a lattice problem defined by a matik The  W,(t)=U,(t)¥(0) is bounded by7]
corresponding time-evolution operator is given ki(t)

—etH. Ideally, this mapping should not change the basic  |I(U(t)=Un(t)W(0)[=[®(t)—Wy(t)[<Cyt7", (13)
symmetries of the original problem. The underlying symme- _ .
try of the Maxwell equations suggests to use matridgbat  WN€re Cn is a constant. The rigorous upper bound on the

are real and skew symmetric. Since formally the time evolu£rror of the EM field vector will be used to specify uncon-
tion of the EM fields on the lattice is given bW(t+7) ditionally stable algorithms by the temporal and spatial ac-
—U()W(t)=e™MP(t), the second ingredient of the nu- curacies of the computed EM field. We denote an algorithm

merical procedure is to choose an approximation of the timegy TgSr:Jlf its mzlemeni@t:odr? mvc:'lvets. a tm;]e mtel(;:)rangn
evolution operatolJ (7). The fact thalU(t) is an orthogonal ased orlJ,(7) and a spatial discretization scheme based on

transformation is essential for the development of an uncon@" Mth-order accurate approximation of the spatial deriva-

ditionally stable algorithm to solve the Maxwell equations V€S-
[1]. A systematic approach to construct orthogonal approxi-

mations to matrix exponentials is to make use of the Lie- IIl. SIMPLE SPATIAL IMPLEMENTATION
Trotter-Suzuki formuld3,4] In this section, we briefly recapitulate the construction of
p m the unconditionally stable algorithm to solve Maxwell equa-
el +H) = |im (H etHi/m) (9) tions in a one-dimensionallD) system. Furthermore, we
Mmoo\ =1 discuss general properties of this implementation referring

also to the two-dimension&2D) and three-dimension&BD)
and generalizations theref,6]. Applied to the case of in- cases.
terest here, the success of this approach relies on the basic Maxwell equations for a 1D system extending alongsthe
but rather trivial premise that the matrtk can be written as  axis contain no partial derivatives with respecytor z. Also
H=3XP_,H;, where each of the matricé} is real and skew & andu do not depend ow or z Under these conditions, the
symmetric. Expression, E@9), suggests that Maxwell equations reduce to two independent sets of first-
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Xy Yz Xy Y, Xy Yz Xy n? . .
- - mom H = . . — , 21
o o —s 1= 2 Birai(681-6.16) (21)

D e
) n—-2
iti - =>' .~ 6128 22
FIG. 1. Positions of the two TM-mode EM field components on Ho= ~ Bir1i+2(81168 €126 1). (22

the 1D grid.
order differential equationf2]. The solutions to these sets Here"gi'i;dl./(fvsi“i) alnd;he p(rtidme ir;]dicates that the sum
are known as the transverse electric mode and the transver§e®Ver 0dd IN€GErs only. -or oduwe have
magnetic(TM) mode[2]. Restricting our considerations to g

the TM mode, it follows from Eq(5) that the magnetic field —W(1t)=B¥(2})
Hy(x,t) =X (x,t)/\u(x) and the electric fieldE,(x,t) ot
=Yz(x,t)/\)s(x) are solutions of

and
a 9 [ Yzx,1)
—Xy(X,t)= — , 14 J
at y(xt) w(x) 9X 1/8()()) (14) E\P(n,t)=—ﬁn_1'n‘lf(n—1,t), (23
EY = 10 X(x0) (15 such that the electric field vanishes at the boundaries
ot 2% )_«/s(x) X\ u(x) [Y,(01)=Y,(n+1t)=0], as required by the boundary con-

ditions, Eqs.(3).
Note that in 1D the divergence ¢i,(x,t) and E,(x,t) is The representation df as the sum of; andH, divides
zero, hence Eqs2) are automatically satisfied. Using the the lattice into odd and even numbered cells. Most important,
central-difference scheme, which yields a second-order acclrowever, bothH; and H, are skew-symmetric block-
rate approximation of the spatial derivatives, we obtain ~ diagonal matrices, containing onexIl matrix and
—1)/2 real 2<2 skew-symmetric matrices. Therefore, ac-

P . 1 (Y i+18) Y,i—1p) 18 cording to the general theory outlined in Sec. Il, this decom-
— X (i 1)= - , osition ofH is suitable to construct an orthogonal approxi-
oty SVui\ Veiis VEi—1 ﬁwation ’ "
iYZ(J—'t): 1 xy(j+1,t) _Xy(j—l,t)>, 17 Ul(7)=eTH1eTH2 (24

at Ve | Vujen VHj-1

that is identical to the time-evolution operatoi() up to
where the spatial coordinate of an EM field component igfirst order in7. As the matrix exponential of a block-diagonal
specified through the lattice indexe.g.,X,(i,t) stands for matrix is equal to the block-diagonal matrix of the matrix
Xy(x=i0/2}t), and 6/2 the distance between two neighbor- exponentials of the individual blocks, the numerical calcula-
ing lattice points. Following Ye¢16] it is convenient to as- tion of e™: (or e™2) reduces to the calculation ofn(
signX,(i,t) andY,(j,t) to the odd, respectively, even num- —1)/2 matrix exponentials of 2 matrices. The matrix ex-
bered lattice site, as shown in Fig. 1 for a gridropoints.  ponential of a typical X 2 matrix appearing ie™'1 or e™2
The Eqgs.(16) and(17) can now be combined into one equa- is simply given by
tion of the form Eq.(7) by introducing then-dimensional

vector W (t) with elements F{ (0 1”(\1’(i,t))_( cosa sina)<\lf(i,t))

X, (i,t)=VmiHy(i,t), i odd RN -1 o/ lwin) " =sina cosa/\w(jp)

wiin={ " SRR (18 (25)
Y,(i,t)=\eE,(i,t), i even.

and represents the rotation of two elements of the vector
The vector®(t) describes both the magnetic and the electricW(t) leaving all the other elements unchanged. This prop-
fields on the lattice points=1, . .. n and theith element of erty of the time-evolution operator, E§24), provides the
W(t) is given by the inner product (i,t)=g"- W(t), where intrinsic possibility to parallelize the algorithms. Further-
e denotes thdth unit vector in then-dimensional vector more, it is even possible to alter the ordering of the products
space. Using this notation, it is easy to show that in the time-evolution operatdy,(7) in order to construct an

efficient implementation for a particular system. The plane

Y(t)=U)Ww(O) with U(t)=exptH), (19  rotations, Eq.(25), are performed by simply processing an
arbitrarily ordered lisS of pairs of EM field vector elements

where the matrixd is represented by two parts, using

H=H;+H,, (20

with ul(r)zl's[ SENCERLT 26
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H, L
E, Hy
Hy
H
HZ .EX r4
'Hy Hx
z < >
y
y
X
FIG. 2. Positions of the three TM-mode EM field components
on the 2D grid fom,=9 andn,=5. FIG. 3. Positions of the EM field components on the 3D Yee
grid.
instead of the odd-even decompositigiq. (24)] for
which $={(1,2),(34),...,(0—2n-1),(2,3),(4,5),..., & are measured in units of their corresponding values in
(n=1n)}. vacuum, respectively;, and uq. The cavity withe=1 and

The implementation for 1D can be readily extended to 2Dy =1 is of size 1% 15 and contains a dielectric medium
and 3D systems, as has been illustrated in RéfIn 2D, the  \yith £=2.25 andu=1 that has an inclined boundary. We
Maxwell equationg(1) separate again into two independentpjot in Fig. 4 the results of simulations in which the wave
sets of equations and the discretization of continuum space |sacket scatters on the dielectric medium. In the four pictures
_done by si_mply reusing the 1D lattice introduced above. Thisye show the EM energy density distributions that are ob-
is shown in Fig. 2 for the case of the 2D TM modes. Thetained after simulation time=12.8 for a fixed mesh sizé
construction automatically takes care of the boundary condi= 1 and for four different time steps It follows from Eq.
tions if n, andny are odd and yields a real skew symmetric (28) that the upper limit for the time step is given by
matrix H. Correspondingly, in 3D the spatial coordinates are—q 3 in this case. For=0.4 the EM energy density distri-
discretized by adopting the standard Yee drd], which  pytion is, in fact, seen to change dramatically such that the
also automatically satisfies the boundary conditions, B)s.  results become meaningless. It should be noted that the limi-
A unit cell of the Yee grid is shown in Fig. 3. tation, Eq.(28), on the time step is different from the Cou-

In general, the time step and the distanc& between ant number that relates the time stepio the stability of
next-nearest neighbor grid points are related due to the errgjjte-difference time-domairfFDTD) algorithms[17] that
that is introduced when the exact time-evolution operatolyre pased on the Yee algorithfa6]. The algorithms pre-
U(7) is replaced by, (7). We have[5-7] sented in this paper are unconditionally stable by construc-

N+l tion for any time stepr and produce reasonable numerical
_ < a(n)7 results up tor=7*, a time step at which the Yee-based
JU(7) = Un(n)l= v(d)| — (27) .
FDTD algorithms may have become unstable.

We conclude this section by noting that our algorithms
Here, y(d) depends on the particular spatial discretizationconserve the divergence of the EM fields only in 1D systems
scheme used and(n) represents the largest positive con- put not in 2D and 3D systems. Although the initial state
stant that appears as a prefactor in the exponential of thgs(t=0) can always be chosen such that the EM fields sat-
approximationU,(7). We find «(2)=1/2 from Eq.(11) and  isfy Egs.(2), the time integration of the Maxwell equations
inspection of Eq(12) yields @(4)=(1/2)(4a—1)~0.33. It  py an algorithm based on the approximatioR(7) yields
follows that for a required spatial resolution, which deter-EM fields whose divergence quickly acquires a finite value
mines the smallness @ the time step has to be chosen suchand then remains constant in time. This is shown in Fig. 5
that where we plot the computed norm of the magnetic field di-
vergence in a 3D system as a function of time. The 3D sys-
tem is an empty cavityg=1 andu=1) of size 1.5¢1.5
X 1.5 and we use th&2S2 algorithm. The reason for this
behavior of the EM field divergence is given by the fact that
in order to keep the error, ER7), small. As an example we the divergence operation commutes with the maltionly
consider a wave packet in a 2D cavity that is simulated by dor a 1D system but not for 2D and 3D systems. However,
T4S2 algorithm. For numerical purposes we use dimensionwe stress that the corresponding error is under control and
less variables throughout this paper, where the unit of lengtikan be reduced by using smaller time steps or algorithms
is denoted byn and the vacuum light velocitg is taken as  with higher-order time accuracy. This can be seen in Fig. 6,
the unit of velocity, while the permittivitg and permeability where we compare the algorithni2S2 and T4S2 as a

(28)
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1=0.1 =0.2 10
= 4 T2s2 —o— |
E; I T4S2 —+— ||
2 10?}
10% |
10°}
10°}
107
0.1 1 10 §or 100

FIG. 4. Energy density distributions at simulation timne12.8
for various time steps obtained by th&'4S2 algorithm for a fixed
mesh size §=0.1. The wave packet with initial parameters
(ox,0y)=(2,1.73), &o.Y0) =(5,7.5), anck=8 [see for details Eq.
(55) in Sec. V Bl impinges on the dielectric structure from the left.
The cavity measures 2915 and contains a dielectric medium with
e=2.25 to the right of the line that connects the points (8.5,0) an
(13,15). The origin (0,0) is located at the lower left corner. In
vacuum the energy density distribution is plotted in black at loca-
tions of maximum intensity scaling and white at locations of zero
intensity. Inside the dielectric medium this scheme is inverted.

FIG. 6. The norm of the divergence of the magnetic field in a 3D
empty cavity =1 andu=1) of size 1.5¢1.5X 1.5 as a function
of 1/7 for the fixed mesh sizé=0.1. The computation is performed
with the algorithmsT2S2 andT4S2.

dsystems the grid has to be variable with a small mesh size in
one region of the system and a large mesh size in another
region of the system. In this section we show how to imple-
ment a variable grid in such a way that the algorithms to
solve the time-dependent Maxwell equations remain uncon-
ditionally stable by construction.

For the sake of simplicity we consider a 1D system that is
discretized using a variable grid as shown in Fig. 7. In a
straightforward implementation of the variable grid we

would replace the constant next-nearest neighbor distdnce

in Egs.(16) and(17) of the simple spatial implementation by
IV. VARIABLE GRID IMPLEMENTATION the corresponding variable distance. It is convenient to write
nthis substitution in the form

function of the time step to show that the error in the EM
field divergence vanishes for thHEnS2 algorithm propor-
tional to 7.

The simple spatial implementation does not provide a
optimal discretization scheme for physical systems of irregu-
lar geometrical shapes or with strongly varying permeability 0—Ajiq 1+
and/or permittivity. In a practical implementation of such

Si—1j= Git1j+2

, 29
24,101 @9

whered; ; is the distance between grid poimtandj (see Fig.

0.01 - - ' ' ' 7) and

== 0.009 1

L 1

2 0.008 1 Ai,i+1E§(5i—l,i+25i,i+l+ Si+1j+2) (30)

= 0.007 1
0.006 1 is the averaged next-nearest neighbor distance. It can be eas-
0.005 ily checked that an implementation of the variable grid that

relies on the replacement E9) would destroy the skew-
0.004 1 symmetry property of the corresponding matkx[see Eq.
(20)]. This is unphysical: The original form of the Maxwell

0.003 equations do have this property. However, a variable grid
0.002 1 implementation that does preserve the underlying symmetry
0.001 T ]
0 . . . . . Xy Y, Xy Y, Y, Xy
0 5 10 15 20 25 ¢ 30 1 2 3 n2 n-1 n
Nt et e et L S W)
FIG. 5. The norm of the divergence of the magnetic fieldina3D  8y; 84, Ou On2mt  Bpan  Onp
empty cavity =1 andu=1) of size 1.5 1.5X 1.5 as a function
of time t. The computation is performed with tHe2S2 algorithm FIG. 7. Positions of the two TM-mode EM field components on
keeping the mesh sizé=0.1 fixed. the 1D variable grid.
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0.06 — T T T 4 £=23 that is located in the middle of the cavity and extends
Ai' € over a length of 2, as shown in Fig. 8. As a reference system

N Rkl Pmmm---- - we use a simple spatial implementation with constant next-
0.045 | {13 nearest neighbor distan@=0.025 and calculate the eigen-

i modesw, of the corresponding matrid. For two different
! variable grids we calculate the corresponding eigenmagles

003 12 and the deviation'(w,,0,)=1—w,/w, relative to the
..................... [ S eigenmodes of the reference system. The two variable grids
have in common that the dielectric medium and the transi-
. 5 tions betweere =1 ande =3 at both its sides is embedded
e e in a grid of constant next-nearest neighbor distance that
equals that of the reference systei (., =5=0.025). Fur-
thermore, at the left end and at the right end of the cavity the
0 - 0 next-nearest neighbor distance is constant over a length of
0 2 4 6 8 10 2.5 and equals, respectively; ;,;=0.1 andA; ;,;=0.05in
the two variable grids. The transitions in the variable grids
FIG. 8. The 1D cavity with the dielectric structu¢solid line) ~ between regions of constant next-nearest neighbor distance
and the two implemented variable grids: A; ;4 involve abrupt steps between
={0.1-~0.05-0.025 (dashed ling and A; ;,;={0.05-0.025
(dOtted Ilné Ai,i+l:O'lHAi,i+l:0'05_>Ai,i+1:0'025’ (35)

0.015

of Maxwell equations can be constructed for a sufficientlywhere we kept the intermediate distantg; . ;=0.05 over
smooth, variable grid. In this case, the second term in theight grid points, and between
brackets of Eq(29) may be neglected and the replacement
Ai,i+1:O'05_>Ai,i+1:0'025! (36)
0= i+1= A4y (3D
respectively.

In Fig. 9 we plotl'(w,, ,w,,) for the first 50 eigenmodes of
both variable grids. The relative deviation is seen to increase
with the number of the frequency modes. As high mode
), (32) numbers represent high frequencies this observation simply
reflects the general fact that the accuracy of the eigenmodes
depends on the smallness of the mesh gizenerical disper-
sion). Clearly, this also explains why the relative deviation

. I'(wn,w,) increases up to 2% for the variable grid with
33 Aii+1={0.1~0.05-0.023, while for the variable grid
with A;;;,;={0.05-0.023 this deviation remains well be-
The corresponding matrik is seen to be skew symmetric, 10w 0.5%. For the first few frequency modes, however, we
observe an increase if(w,,,). This behavior can be re-
lated to the error that is introduced in the variable grid imple-

e PN RO R T (R L P! 34  the error that s In e
, mentation by applying the approximation, , instea
Alivaveivati AigivoVeivikice of the exact replacement, E(R9). To check this statement

and may again be separated into odd and even parts of whidke plot in Fig. 10 the deviatioh’({),,w;) for the first 50
the exponents can be easily calculated following the samgigenmodes of the two variable grids relative to the eigen-
steps as given above in the simple spatial implementation. modes (), that belong to the variable grids of the exact
It is obvious that this variable grid implementation can, inimplementation, Eq(29). We see that the increase of the
princip|e1 be app“ed in any Spatia| dimensionHowever, it relative deviation for the first few eigeandeS is, in fact,
is in general not possible to predict how to choose a grid thatelated to the error that is made by replacing the exact sub-
yields the best approximation to the true spectrum of eigenstitution, Eq.(29), with the skew-symmetry conserving ap-
modes of any nontriviab-dimensional system. We, there- Proximation, Eq.(31). This approximation leads to oscilla-
fore, studied the criteria for the choice of suitable variabletions of I'((),,,®,) [and alsoI'(w,®,)] that vanish with
grids in particular systems numerically and present the reincreasing frequency mode number. From extended numeri-
sults for a 1D and a 2D system in the remainder of thiscal studies(results not shownwe find that these variations
section. depend on several factors, such as the size in the difference
The 1D system under consideration consists of a cavity obetween the largest and smallest distankgs ; of the vari-
lengthL =10 with a constant permeability=1 and a vary-  able grid implementation and on how abrupt; ,; changes
ing permittivity e. The permittivity deviates from its vacuum with i. In practice, it will be necessary to check the robust-
value (=1) due to the presence of a dielectric medium withness of numerical results obtained by a variable grid imple-

may yield a resonable approximation of E¢$6) and (17)
for the variable grid implementation:

1

i Y(i+10) Y (i—1p)
Exy(l,t)—ﬁ

Ai,i+1\/8i+1 Ai,i—1 €i-1

X, (i +21) Xy(i,t)

Ai+1,i+2V/—l«i+2 Ai+l,i\/E

J._ .
S Yalit1n=

1
VEi+1

n
H=Z'

=1
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FIG. 11. The L-shaped 2D cavity with a variable gftsthemati-
cally).

-0.01 [

-0.015

0 10 20 30 40 n 50

points outside the L-shaped cavity, we perform the plane
rotations by processing a list of pagof the EM field vector

elements at the grid points that actually belong to the

mgntation against small phanggs in its parameters. A“hOUgt'-shaped cavitfcorresponding to Eq26) for the 1D sys-
this may sound as a serious disadvantage, the next examq@m]_

of a 2D system shows that for realistic applications it may be | Taple | we present the results of a numerical simulation
by far more efficient to perform several simulation runs with oy the eight lowest TM eigenmodes in the cavity. We used
a variable grid implementation than to use the simple spatigh,e T252 algorithm imposing a simple spatial implementa-

implementation. o tion with §=0.003 125 and a variable grid implementation
The 2D system we consider is given by thehaped cav-  \ith a mesh size ranging from =0.05 to A =0.003 125.

ity depicted in Fig. 11. In order to satisfy the conditions, Eq.Very similar to the procedure described above for the 1D
(3), at the boundaries, the EM fields change very stronglyystem, the mesh size is decreased by a factor 0.5 and then
close to the sharp edge of the cavity. Large spatial changes bt constant for several grid points to smoothen this transi-
the EM fields require a small mesh size. However, for thejqn pefore the mesh size is decreased further. Our results are
overwhelming part of the cavity a small mesh size would;, good agreement with those obtained by the program pack-
cause a waste of resourcésomputer memory and CPU 46 cpripL [18] for the same 2D systertsee Table )l In
time). Therefore, this system can be more efficiently simu-—ap|e || we show the location of the arbitrarily chosen third-
lated by a variable grid implementation with an increasing,, est eigenmoda for several constant and variable grid

number of grid points near the edge. This is done by & unisy jementations of th@2S2 algorithm. In all simulations
form increase of the number of grid points along both sthe we setd/7=10, where in the case of a variable gris

and they directions as is schematically drawn in Fig. 1., placed by the smallest mesh size. The relative dfrof

Furthermore, in_stead of using the Odd'?ve” decomposition Ghe frequencyws is measured with respect to the frequency
the time-evolution operatdrcorresponding to Eq(24) for w;=4.916 of the system with constant mesh side

the 1D systethon a square grid that would contain grid =0.003 125. The numerical results obtained within the vari-
able grid implementation are in excellent agreement with the

FIG. 9. Relative deviatiof (o, ,®,) for two variable grids.

0.005 ' ' ' ' results of the simple spatial implementation and the program
'ef TABLE |. The eight lowest TM eigenmodes of the L-shaped
o 09 cavity (see Fig. 11
=

Moden T2S2 GDFIDL
-0.005 Constant Variable Constant Variable
Grid w, Grid w, Grid w, Grid w,
1 2.9989 2.9913 2.9999 2.9992

-0.01 2 3.9807 3.9500 3.9740 3.9720

A0.05 -» 0,025 —o— 3 49164 4.8857 49156 49102

A=0.1 -+ 0.025 s 4 5.4150 5.3843 5.4077 5.4004

-0.015 1 5 5.5837 5.5453 5.5791 5.5710
' 6 6.0592 6.0209 6.0580 6.0494

0 10 20 30 4 50 7 6.7649 6.7265 6.7511 6.7377

8 6.8876 6.8492 6.8797 6.8674

FIG. 10. Relative deviatiod' (2,,,,) for two variable grids.
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TABLE 1. Error in third-lowest eigenmode of the-shaped cav-  computer resources in terms of CPU time and computer

ity (see Fig. 11 memory.

The procedure for the construction of higher-order ap-
Constant grids w3 I (in %) proximations to spatial derivatives is stand4gd]. In the
0.1 4571 75 present case, we apply this procedure keeping in mind that

Maxwell equations(5) are skew symmetrical and that the

0.05 4.740 3.7 . L -
electric and magnetic field components are defined at par-
0.025 4.832 1.7 . . . . . . .
ticular grid points. The grid of d-dimensional system with a
0.0125 4.878 0.78 . . . . .
0.00625 4.901 0.31 constant mesh size of distané® between neighboring grid
0'003125 4-916 'O points is shown in Figs. 1-3. Without loss of generality we
: : consider a 1D system, wherg(i,t)=W (i 6/2t) is theith
Variable gridA component of the EM field vector and denotes an electric
0.1-0.05 4.717 4.2 field component for evenand a magnetic field component
0.1-0.025 4.801 2.4 for oddi (see Sec. Il for detai)s Applying the second-order
0.1-0.0125 4.840 1.6 accurate central-difference scheme the spatial derivative of
0.1—0.00625 4.878 0.78 the EM field componen¥ (i,t) is given by
0.05-0.003125 4.886 0.61

d P(i+1H)—W(i—1t) &
— (i t)= — —pB)j 4
AU 5 5 VAi.n+0(5%,
packagesDFIDL. TheT2S2 algorithm with the simple spatial (37
implementation an@d=0.003 125 consumes about 150 times 3. . 3 e ) )
more CPU time and 10 times more computer memory thaivhere W®)(i,t)=4>¥ (i,t)/9x*. Similarly, using the third-
the T2S2 algorithm with variable grid implementation and hearest neighbor EM field points at distanc&2 we have
A={0.05-0.003 125. Clearly, these numbers justify addi- ) ) 5
tional simulation runs that are required to check the robust- 9 .~ W(0+3H)—-W({i—-31) 95 .
X ; . —WV(it)= ——P) (1)

ness of numerical results against small changes in the param-  gx 36 6
eters of a variable grid implementation. 4

+0(5%). (38)

V. IMPROVED SPATIAL DISCRETIZATION A fourth-order accurate approximation of the spatial deriva-
IMPLEMENTATION tive 9 (i,t)/9x is now constructed in terms of a linear com-
bination of Eqs(37) and(38), which is chosen such that the

Both conditional FDTD algorithms and the uncondition- terms proportional to? (i t) vanish. We obtain:

ally stableTnSmalgorithms suffer from numerical disper-
sion due to the discretization of continuum space on a grid

with a finite mesh siz¢17]. Methods to reduce numerical i\lf(i’t)zg P+1H ¥ 1’”)
dispersion are taking a grid with a smaller mesh size or em- IX 8 6

ploying more accurate finite-difference approximations to the 1/ W(i+3)—W(i—31)

spatial derivatives. The former obviously can be also used in ——( ’ ' ) +0(8%.
the simple spatial implementation of unconditionally stable 8 30

algorithms, however, for several reasons it may be more de- (39
sirable to implement higher-order accurate approximations of

the spatial derivatives. For example, if one is interested irin practice, it is straightforward to implement the improved
global features of the distribution of a system’s eigenmodesspatial discretization, since we can use the implementation of
i.e., if we want to determinall eigenvalues, a higher-order the central-difference scheme for the two terms separately
accurate spatial derivative implementation would be stronghyand then combine the results according to &§). The cor-
preferred. The computation of a system’s eigenmode specesponding matri¥d of the 1D systenfisee Eq(20)] changes
trum is performed by calculating the Fourier transform of thefrom tridiagonal to pentadiagonal, but most importantly it
inner producf (t) =(W(0)|W(t)) [1,19,20. Using indepen- preserves its property of being skew symmetric. It should be
dent random numbers to initialize the elementdltff0), the  noted, however, that the fourth-order accurate spatial deriva-
full eigenmode spectrum is obtained by averaging this Foutive introduces errors at the boundaries since the calculation
rier transform. Taking just a smaller mesh size for the grid inof W (i,t)/ox fori=1, 2,n—1, andn refer, respectively, to
the simple spatial implementation does not only reduce thgrid pointsi=—2, —1, n+1, andn+ 2 that lie outside the
numerical dispersion but also gives rise to more eigenmodesavity and are implicitly assumed to be zero.

with high frequencies. In order to obtain the eigenmode It is obvious that the fourth-order accurate approximation
spetrum with the same spectral resolution, the sampling odf the spatial derivatives can be similarly applied in systems
F(t) would have to be done over smaller time intervals in-of any spatial dimension. In the remainder of this section
volving the computation of more data points. It is thus desir-we study the numerical dispersion and the temporal and spa-
able to implement, instead, higher-order accurate approximdial accuracies of the algorithms for various 1D and 2D sys-
tions of the spatial derivatives that make a moderate use déms.
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A. Numerical dispersion 35
We Iillustrate the difference in the numerical dispersion @
between the simple spatial implementation and the improved
spatial discretization implementation by a comparison of the 25t
eigenmode spectra of a 1D empty cavity1 andu=1) of e
length L. In 1D, the continuum wave equation for the EM 20l _,.-;;,4-*-**
fields[2], ,.;i"""w
{ 10 & 19 o
————|¥(x,1)=0, (40) S2-cav  ©
c? a2 9x? 10t S2-theory
S4-cav T
is solved by the ansat®(x,t)«cost—kx+¢) (with a 5} S4-theory =~~~
phase¢ to distinguish electrical and magnetic field compo- continuum "
nentg yielding the linear dispersion relation between fre- 0

quency ® and wave numbek; o=cl|k|. Focusing on the 0 5 1 1% 20 25 30, 3
effect of the spatial derivatives on the numerical dispersion, ) ] ) ] )

we assume perfect time integration of the algorithms and FIG. 12. Numerical and analytical dispersion relations for the
impose periodic boundary conditions on the EM field com- 1D cavity of lengthL=4 as obtained from calculations with
ponents: Wy )~ cos(ugt—k,d12+ ) with wave number Tiorder accurate approxmators of ihe spatia dervaiies (
kp=2mp/L and —L/(26)<p=<L/(26). Applying the e ' ' '

second-order accurate spatial derivative we obtain the dispersion relation computed by the simple spatial imple-

2 1 mentation T2S2 algorithm) suffers from numerical disper-
V(i) = =[P (i+21)— 2 (i,t) + ¥ (i—21)] sion already at frequencies abowe= 10, whereas for a grid
plis oLEp ’ pLis P , ) : .
) with the same mesh size the fourth-order accurate spatial

derivative implementationT2S4 algorithnm) works well up
+0(8%), 4D 1o w=15.

while for the fourth-order accurate spatial derivative we find _ _
B. Temporal and spatial accuracies

2 To perform a systematic study of the accuracy of the al-

gorithms as a function of the time ste@mnd the mesh sizé,
we compute the difference between the normalized exact,

Wi, )=

2
9) [Wo(i+2) = 2W ,(i,) + W (i —2)]

1\2 i W(t), and the approximateW, (t), EM field vectors as
245) [Wp(i+6.0)—2W,(i,0) obtained by thél nSmalgorithm:
) Aq’n,m(t)EH‘I’(t)_\Fn,m(t)”- (45)
+\pr(|—6t)]+ [Wp(i+2)+ Wi i ) ) .
We first consider the propagation of a Gaussian wave
packet in a 1D empty cavitye(=1 andu=1) of lengthL
=20 = W,(i+44) — V(i —4H)]+0(5). =30. Att=0 the Gaussian wave packet

(42 E,(x,t)=exd — (X—Xq—ct)?/0?] (46)

Form=2 the analytical solution of the eigenmode spectrum

for the mth-order accurate spatial derivative is given by with standard deviatiow =2 is located ak,=8. Fort>0

the wave packet propagates with veloaitin the x direction

c\? until it hits the right boundary of the cavity, becomes re-
wp= 2(5 [1—cogk,d)], (43)  flected, and propagates in the opposite direction. To derive an
analytical expression of the exact EM field vect(t), we
while for m=4 we find expandE,(x,t) in the TM modes,
c\23 -
o= 5] Z, ¢ cotie @y ExD=-3 asinnmaL)siinm(x oo/l
(47)

with coefficientsCy,= 365/144,C,= —87/32,C,=3/16, and
C3;=—1/288. We show in Fig. 12 that the dispersion rela-
tions that we obtained numerically by thgh-order accurate ~ Hy(X/)= + E ap cognmx/L)cognm(xo+ct/L],
spatial derivative implementation for a 1D cavity of length (48)
L =4, are in excellent agreement with the corresponding ana-

lytical solutions, Eqs(43) and (44). It is clearly visible that  with coefficients
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FIG. 13. The errorAW¥, (t) as a function of the simulation

FIG. 14. f,, n(7,6) as a function of 1 for the fixed mesh size

time t for fixed values of the mesh siz8&=0.1 and the time step S=0.1
7=0.01. Results are shown for ti&S2 andT4S4 algorithms. o

which ensure that the wave packet satisfies the boundary
conditions, Eq(3). Using Poisson’s summation formula we

e -

points. To study the errakW,, (t) as a function of the time
(490  stepr and the mesh sizé, we compute

1d
fn,m(Tu 5):EaA‘pn,m(t)- (53

find the following expressions for the EM field components:

©

E,(x,t)= > {exg —(2nL+x+X,—ct)?/¢?]

=—x

—exf — (2nL+x—Xxq+ct)?/ o?]},

[

Hy(x,0)= 2 {exd —(2nL+x+xo—ct)?/o?]

=—o0

+exd — (2nL+x—xy+ct)?/ o?]},

In Fig. 14 we plotf , (7, 6) as obtained for the 1D cavity by
the four algorithmsT2S2, T4S2, T2S4, andT4$4 as a
function of 1/ for a fixed mesh sizé. For each algorithm
TnSmwe find a linear decrease of log, ,(7,5)] with in-
creasing values Igd/r]. For the algorithmsT4S2 and
T4S4 we find thatf, (7, &) 7*, while for the T2S2 and
T2S4 algorithmsf, (7, 8)= 2. This numerical result is in
agreement with the rigorous upper bound on the error of the
EM field vector, Eq.(13). For decreasing values af, the
(5D error in the time integration becomes negligibly small and
fn.m(7,6) reaches minimum values that are indicated by the

(50

from which the exact EM field vectoW(t) is constructed two lines “exactS2” for the algorithmsTnS2 and “exact

according to Eq(18) on the 1D grid(see Fig. 1

S4” for the algorithmsTn$A. In fact, these two lines repre-

~ In Fig. 13 we plotA W 1(t) as a function of the simula- sent the numerical results that are obtained for an exact time
tion time't for fixed values of the mesh sizg¢and the time  integration andmth-order accurate approximations to the
step 7 using both theT4S2 and theT4S4 algorithms. We  spatial derivatives.

find that the error increases roughly proportional to the simu-  Next, we studyf,, (7,8) as a function of the mesh size

lation time:

AW, (1) =2f, n(7, ),

for the fixed ratior/ §=0.1 to ensure that the accuracy of the

time integration remains constant. The numerical results are
(52 plotted in Fig. 15. We see that Ipf, (7, 8)] decreases lin-

early with increasing lodl/s] until it levels off. At this

where we used the prefactor 2 to ensure thatfQ,(7,6)  point, the total number of operations has become so large
<1. The linear dependence afl,, (t) ontis clearly vis-  that it causes the numerical loss of accuracy. Outside this
ible only for the T4S2 algorithm but is also true for the regime we find for theTnS4 algorithmsf,, 4(7,8)* 5% and
T4$4 algorithm with a much smaller slogig ,(7,6). Only at  for the Tn2 algorithmsf, ,(7,8)=52. In analogy to the
particular timest when the wave packet hits the boundariesupper bound, Eq(13), the upper bound for thenth-order

of the cavity, the erroa W, 4t) is seen to increase nonlin- accurate approximation of the spatial derivatives is given by
early in the timet and takes a value that is of the same order

as AW, t). This behavior, not described by E2), is
present in fourth-order accurate spatial derivative implemen-

”\If(t)_‘Pn,m(t)”$cn,mt5mv (54)

tations, in which the calculation of the EM field components
close to system boundaries refer to several nonexisting gridhereC,, ,, is a constant.
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FIG. 15. f, m(7,6) as a function of 14 for the fixed ratior/ &
=0.1.

We consider a second example to illustrate the numerical g
performance of the algorithms in 2D systems. For the initial
wave packet in the 2D cavity we make the ansatz e

E,(X,y,t) =sin(k(x—Xo— ct))ex — (X—Xo— Ct)/ o )10 FIG. 16. The errodw,, (r,t) for various mesh sizes and algo-
zma 0 0 X rithms in a 2D cavity of size 12 10. The origin (0,0) is located at
—((y— yo)/g'y)z]_ (55) the lower left corner. Two rectangular blocks of a dielectric medium
with e=5 are located at théower left)/(upper righi coordinates
(6.8,1.9/(8.2,4.8) and (7.8,5)2(9.2,8.2), respectively. In vacuum
the energy density distribution is plotted in black at locations of
maximum intensity scaling and white at locations of zero intensity.

At t=0 the wave packet is centered at(y,) and moves at
t>0 with velocity c in the x direction. The energy of the
wave paCk?‘ Is fixed by 'the wave nhum#iein th(? osplllatlng Inside the dielectric medium this scheme is invertgdl Initial en-
factor and its envelope is Gal_JSSIan alongyfurection and ergy density distributionF(r,t)2. (b) Reference energy density dis-
has sharp edges along tkeaxis (due to the exponent 10). ihution W, Ar,t)? at t=6 using theT2S2 algorithm with &
The 2D cavity of size 1210 withe=1 andu=1 contains  —0,025,(c) The errorAw, Ar,t) on the energy density distribution
two objects with dielectric constants=5 andu=1. The  att=6 using theT2S2 algorithm with=0.1. The relative devia-
parameters of the propagating wave packet arg,§,)  tion is 26%.(d) The errorAw, Ar,t) on the energy density distri-
=(1.66,1.29), Xo,Y0)=(3.5,5.5), andk=5. In Fig. 16 we bution att=6 using theT2S2 algorithm with8=0.05. The relative
show the results for the error, E(U5), of the T2S2 and  deviation is 5.9%(e) The errorAw, ,(r,t) on the energy density
T2S4 algorithms with different mesh sizes relative to a ref-distribution att=6 using theT2S4 algorithm with §=0.1. The
erence EM field vectoW(t) that is obtained from th&2S2  relative deviation is 5.1%.

algorithm at mesh sizé=0.025. In all simulations we kept

7=0.16 fixed to compare measurements of constant accu- VI. CONCLUSIONS

racy in the time integration. In Fig. 16 we shda) the en-
ergy distribution of the initial wave packet= 0) and(b) the
reference energy density distribution after simulation time
=6 using ther2S2 algorithm. In Fig. 16c)—(e), the normal-
ized spatial distribution of the error in the energy density
distribution,

We have demonstrated that the previously introduced
family of unconditionally stable algorithms to solve the time-
dependent Maxwell equations can be implemented with a
grid of variable mesh size and with a fourth-order accurate
approximation to the spatial derivatives. The performance of
) 5 the algorithms has been shown to increase significantly as

AW (1, 1) = [W(r,1)% =W, n(r,1)7, (56)  compared to the previously applied simple spatial implemen-
tation while at the same time their property of unconditional
is shown for, respectively, the algorith2S2 with 6=0.1,  stability by construction is preserved. Performing numerical
the algorithmT2S2 with 5=0.05, and the algorithii2S4  simulations on various physical model systems, we found
with §=0.1. We find that the improved spatial discretizationthat a variable grid implementation can save orders of mag-
implementationT2S4 with 6=0.1 performs as well as a nitude in computer memory and CPU time for a physical
simple spatial implementatioh2S2 with half the mesh size. system of unregular geometrical shape or with strongly vary-
The main advantage of using tAi@2S4 algorithm is that it ing permeability and/or permittivity. Similar enhancements
used only 20% of the computer memory and 10% of thehave been obtained for the fourth-order accurate spatial de-
CPU time with respect to th€2S2 algorithm. rivative implementation that does not only reduce the nu-
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merical dispersion but also improves the temporal and spatidb construct implementations that are required in different
accuracies of the algorithms significantly. Clearly, in closekinds of specific applications.

analogy to the implementation of the fourth-order approxi-
mation of the spatial derivatives, the algorithms may be im-
proved by constructing higher-order approximations. In gen-
eral, we conclude that the family of unconditionally stable This work was partially supported by the Dutch “Stich-
algorithms does not only preserve the fundamental symmeing Nationale Computer FaciliteitenlNCF). We thank W.
tries of the time-dependent Maxwell equations but is alsdBruns for providing numerical results generated by the pro-
characterized by a high degree of flexibility that allows onegram packag&DFIDL.
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