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Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations
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For the recently introduced algorithms to solve the time-dependent Maxwell equations@J. S. Kole, M. T.
Figge, and H. De Raedt, Phys. Rev. E64, 066705~2001!#, we construct a variable grid implementation and an
improved spatial discretization implementation that preserve the exceptional property of the algorithms to be
unconditionally stable by construction. We find that the performance and accuracy of the corresponding
algorithms are significant and illustrate their practical relevance by simulating various physical model systems.

DOI: 10.1103/PhysRevE.65.066705 PACS number~s!: 02.60.Cb, 03.50.De, 41.20.Jb

I. INTRODUCTION

In a recent paper, we introduced a family of algorithms to
solve the time-dependent Maxwell equations@1#. Salient fea-
tures of these algorithms include the rigorously provable un-
conditional stability ford-dimensional systems (d51,2,3)
with spatially varying permittivity and permeability, as well
as the exact conservation of the energy density of the elec-
tromagnetic~EM! fields. Furthermore, we have demonstrated
that without affecting the unconditional stability of the algo-
rithms the order of accuracy in the time integration can be
systematically increased. An important aspect that has not
been considered in our earlier work@1# concerns the effect of
the discretization of space on the accuracy of the algorithms.
Previously, we employed only the most simple spatial dis-
cretization, namely, the central-difference scheme on a Car-
tesian grid with a constant mesh size@1#. We refer to this
spatial discretization scheme as thesimple spatial implemen-
tation. Many numerical simulations of realistic physical sys-
tems require algorithms with a more accurate spatial discreti-
zation and a more flexible spatial grid for an optimal use of
computer resources~CPU time and computer memory!. In
the present paper we show that implementing a fourth-order
accurate approximation of the spatial derivatives and a spa-
tial grid of variable mesh sizes preserve the unconditional
stability of the algorithms. We simulate various physical
model systems using these proposed implementations to
demonstrate the significant improvement with respect to the
required computer resources in the computation of eigen-
mode spectra and to study systematically the temporal and
spatial accuracy of the algorithms.

Our presentation is organized as follows: We recapitulate
the theory of constructing unconditionally stable algorithms
to solve the time-dependent Maxwell equations in Sec. II and
describe the basic properties of the simple spatial implemen-
tation in Sec. III. Then, in Secs. IV and V, we present the
implementation of, respectively, the variable grid and the im-

proved spatial discretization. Our conclusions are given in
Sec. VI.

II. UNCONDITIONALLY STABLE ALGORITHMS TO
SOLVE MAXWELL EQUATIONS

We consider ad-dimensional model system of EM fields
in a medium with spatially varying permittivity and/or per-
meability, surrounded by a perfectly conducting box. In the
absence of free charges and currents, the EM fields in such a
system satisfy the Maxwell equations@2#

]

]t
H52

1

m
“3E and

]

]t
E5

1

«
“3H, ~1!

div «E50 and divmH50, ~2!

where H5(Hx(r ,t),Hy(r ,t),Hz(r ,t))T and E5(Ex(r ,t),
Ey(r ,t),Ez(r ,t))T denote, respectively, the magnetic field
and the electric field vectors. The permeability and the per-
mittivity are given bym5m(r ) and«5«(r ). For simplicity
of notation, we will omit the spatial dependence onr
5(x,y,z)T unless this leads to ambiguities. On the surface of
the perfectly conducting box the EM fields satisfy the bound-
ary conditions@2#

n3E50 and n•H50, ~3!

with n denoting the vector normal to a boundary of the sur-
face. The conditions, Eqs.~3!, assure that the normal com-
ponent of the magnetic field and the tangential components
of the electric field vanish at the boundary@2#. Some impor-
tant symmetries of the Maxwell Eqs.~1! and~2! can be made
explicit by introducing the fields

X~ t !5AmH~ t ! and Y~ t !5A«E~ t !. ~4!

In terms of the fieldsX(t) and Y(t), the time-dependent
Maxwell equations~1! read
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where the operatorH is given by

H5S 0 2
1

Am
“3

1

A«

1

A«
“3

1

Am
0

D . ~6!

Writing C(t)5„X(t),Y(t)…T, Eq. ~5! becomes

]

]t
C~ t !5HC~ t !. ~7!

It is easy to show thatH is skew symmetric, i.e.,
H T52H, with respect to the inner product̂CuC8&
[*VCT

•C8dr , whereV denotes the volume of the enclos-
ing box. The formal solution of Eq.~7! is given by

C~ t !5U~ t !C~0!5etHC~0!, ~8!

whereC(0) represents the initial state of the EM fields. The
operatorU(t)5etH determines the time evolution. By con-
struction iC(t)i25^C(t)uC(t)&5*V@«E2(t)1mH2(t)#dr ,
relating the length ofC(t) to the energy densityw(t)
[«E2(t)1mH2(t) of the EM fields@2#. As U(t)T5U(2t)
5U 21(t)5e2tH it follows that ^U(t)C(0)uU(t)C(0)&
5^C(t)uC(t)&5^C(0)uC(0)&. Hence the time-evolution
operatorU(t) is an orthogonal transformation, rotating the
vector C(t) without changing its lengthiCi . In physical
terms this means that the energy density of the EM fields
does not change with time, as expected on physical grounds
@2#.

A numerical procedure that solves the time-dependent
Maxwell equations necessarily starts by discretizing the spa-
tial derivatives. This maps the continuum problem described
by H onto a lattice problem defined by a matrixH. The
corresponding time-evolution operator is given byU(t)
5etH. Ideally, this mapping should not change the basic
symmetries of the original problem. The underlying symme-
try of the Maxwell equations suggests to use matricesH that
are real and skew symmetric. Since formally the time evolu-
tion of the EM fields on the lattice is given byC(t1t)
5U(t)C(t)5etHC(t), the second ingredient of the nu-
merical procedure is to choose an approximation of the time-
evolution operatorU(t). The fact thatU(t) is an orthogonal
transformation is essential for the development of an uncon-
ditionally stable algorithm to solve the Maxwell equations
@1#. A systematic approach to construct orthogonal approxi-
mations to matrix exponentials is to make use of the Lie-
Trotter-Suzuki formula@3,4#

et(H11•••1Hp)5 lim
m→`

S )
i 51

p

etHi /mD m

, ~9!

and generalizations thereof@5,6#. Applied to the case of in-
terest here, the success of this approach relies on the basic
but rather trivial premise that the matrixH can be written as
H5( i 51

p Hi , where each of the matricesHi is real and skew
symmetric. Expression, Eq.~9!, suggests that

U1~t!5etH1
•••etHp ~10!

might be a good approximation toU(t) if t is sufficiently
small. In fact, it can be shown thatU(t) and U1(t) are
identical up to first order int @7#. Most importantly, if all the
Hi are real and skew symmetric,U1(t) is orthogonal by
construction. Therefore, by construction, a numerical scheme
based on Eq.~10! will be unconditionally stable. The
product-formula approach provides simple, systematic pro-
cedures to improve the accuracy of the approximation to
U(t) without changing its fundamental symmetries. For ex-
ample, the orthogonal matrix

U2~t!5U1
T~2t/2!U1~t/2!

5etHp/2
•••etH2/2etH1etH2/2

•••etHp/2 ~11!

is identical toU(t) up to second order int @5,6#. Suzuki’s
fractal decomposition approach@5# gives a general method to
construct higher-order approximations based onU1(t) or
U2(t). A particularly useful approximation, which is identi-
cal to U(t) up to fourth order int, is given by@5#

U4~t!5U2~at!U2~at!U2„~124a!t…U2~at!U2~at!,

~12!

wherea51/(4241/3). From Eqs.~10!–~12! it follows that,
in practice, an efficient implementation of a scheme based on
U1(t) is all that is needed to construct the higher-order al-
gorithms, Eqs.~11! and~12!. The approximationsUn(t) are
identical to the exact time-evolution operatorU(t) up tonth
order int and have proven to be very useful in many appli-
cations@4,6–15#. They turn out to be equally useful for solv-
ing the time-dependent Maxwell equations@1#. In particular,
it can be shown that the difference between the exact EM
field vector C(t)5U(t)C(0) and the approximate one,
Cn(t)5Un(t)C(0) is bounded by@7#

i„U~ t !2Un~ t !…C~0!i5iC~ t !2Cn~ t !i<Cnttn, ~13!

where Cn is a constant. The rigorous upper bound on the
error of the EM field vector will be used to specify uncon-
ditionally stable algorithms by the temporal and spatial ac-
curacies of the computed EM field. We denote an algorithm
by TnSm if its implementation involves a time integration
based onUn(t) and a spatial discretization scheme based on
an mth-order accurate approximation of the spatial deriva-
tives.

III. SIMPLE SPATIAL IMPLEMENTATION

In this section, we briefly recapitulate the construction of
the unconditionally stable algorithm to solve Maxwell equa-
tions in a one-dimensional~1D! system. Furthermore, we
discuss general properties of this implementation referring
also to the two-dimensional~2D! and three-dimensional~3D!
cases.

Maxwell equations for a 1D system extending along thex
axis contain no partial derivatives with respect toy or z. Also
« andm do not depend ony or z. Under these conditions, the
Maxwell equations reduce to two independent sets of first-
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order differential equations@2#. The solutions to these sets
are known as the transverse electric mode and the transverse
magnetic~TM! mode @2#. Restricting our considerations to
the TM mode, it follows from Eq.~5! that the magnetic field
Hy(x,t)5Xy(x,t)/Am(x) and the electric fieldEz(x,t)
5Yz(x,t)/A«(x) are solutions of

]

]t
Xy~x,t !5

1

Am~x!

]

]x S Yz~x,t !

A«~x!
D , ~14!

]

]t
Yz~x,t !5

1

A«~x!

]

]x S Xy~x,t !

Am~x!
D . ~15!

Note that in 1D the divergence ofHy(x,t) and Ez(x,t) is
zero, hence Eqs.~2! are automatically satisfied. Using the
central-difference scheme, which yields a second-order accu-
rate approximation of the spatial derivatives, we obtain

]

]t
Xy~ i ,t !5

1

dAm i
S Yz~ i 11,t !

A« i 11

2
Yz~ i 21,t !

A« i 21
D , ~16!

]

]t
Yz~ j ,t !5

1

dA« j
S Xy~ j 11,t !

Am j 11

2
Xy~ j 21,t !

Am j 21
D , ~17!

where the spatial coordinate of an EM field component is
specified through the lattice indexi, e.g.,Xy( i ,t) stands for
Xy(x5 id/2,t), andd/2 the distance between two neighbor-
ing lattice points. Following Yee@16# it is convenient to as-
sign Xy( i ,t) andYz( j ,t) to the odd, respectively, even num-
bered lattice site, as shown in Fig. 1 for a grid ofn points.
The Eqs.~16! and~17! can now be combined into one equa-
tion of the form Eq.~7! by introducing then-dimensional
vectorC(t) with elements

C~ i ,t !5H Xy~ i ,t !5Am iHy~ i ,t !, i odd

Yz~ i ,t !5A« iEz~ i ,t !, i even.
~18!

The vectorC(t) describes both the magnetic and the electric
fields on the lattice pointsi 51, . . . ,n and thei th element of
C(t) is given by the inner productC( i ,t)5ei

T
•C(t), where

ei denotes thei th unit vector in then-dimensional vector
space. Using this notation, it is easy to show that

C~ t !5U~ t !C~0! with U~ t !5exp~ tH !, ~19!

where the matrixH is represented by two parts,

H5H11H2 , ~20!

with

H15 (
i 51

n22

8 b i 11,i~eiei 11
T 2ei 11ei

T!, ~21!

H25 (
i 51

n22

8 b i 11,i 12~ei 11ei 12
T 2ei 12ei 11

T !. ~22!

Here,b i , j51/(dA« im j ) and the prime indicates that the sum
is over odd integers only. For oddn we have

]

]t
C~1,t !5b2,1C~2,t !

and

]

]t
C~n,t !52bn21,nC~n21,t !, ~23!

such that the electric field vanishes at the boundaries
@Yz(0,t)5Yz(n11,t)50#, as required by the boundary con-
ditions, Eqs.~3!.

The representation ofH as the sum ofH1 andH2 divides
the lattice into odd and even numbered cells. Most important,
however, both H1 and H2 are skew-symmetric block-
diagonal matrices, containing one 131 matrix and (n
21)/2 real 232 skew-symmetric matrices. Therefore, ac-
cording to the general theory outlined in Sec. II, this decom-
position ofH is suitable to construct an orthogonal approxi-
mation

U1~t!5etH1etH2 ~24!

that is identical to the time-evolution operatorU(t) up to
first order int. As the matrix exponential of a block-diagonal
matrix is equal to the block-diagonal matrix of the matrix
exponentials of the individual blocks, the numerical calcula-
tion of etH1 ~or etH2) reduces to the calculation of (n
21)/2 matrix exponentials of 232 matrices. The matrix ex-
ponential of a typical 232 matrix appearing inetH1 or etH2

is simply given by

expFaS 0 1

21 0D G S C~ i ,t !

C~ j ,t ! D 5S cosa sina

2sina cosa D S C~ i ,t !

C~ j ,t ! D ,

~25!

and represents the rotation of two elements of the vector
C(t) leaving all the other elements unchanged. This prop-
erty of the time-evolution operator, Eq.~24!, provides the
intrinsic possibility to parallelize the algorithms. Further-
more, it is even possible to alter the ordering of the products
in the time-evolution operatorUn(t) in order to construct an
efficient implementation for a particular system. The plane
rotations, Eq.~25!, are performed by simply processing an
arbitrarily ordered listSof pairs of EM field vector elements
using

U1~t!5)
S

etb i , j (eiej
T

2ejei
T), ~26!

FIG. 1. Positions of the two TM-mode EM field components on
the 1D grid.
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instead of the odd-even decomposition@Eq. ~24!# for
which S5$(1,2),(3,4),. . . ,(n22,n21),(2,3),(4,5),. . . ,
(n21,n)%.

The implementation for 1D can be readily extended to 2D
and 3D systems, as has been illustrated in Ref.@1#. In 2D, the
Maxwell equations~1! separate again into two independent
sets of equations and the discretization of continuum space is
done by simply reusing the 1D lattice introduced above. This
is shown in Fig. 2 for the case of the 2D TM modes. The
construction automatically takes care of the boundary condi-
tions if nx andny are odd and yields a real skew symmetric
matrix H. Correspondingly, in 3D the spatial coordinates are
discretized by adopting the standard Yee grid@16#, which
also automatically satisfies the boundary conditions, Eqs.~3!.
A unit cell of the Yee grid is shown in Fig. 3.

In general, the time stept and the distanced between
next-nearest neighbor grid points are related due to the error
that is introduced when the exact time-evolution operator
U(t) is replaced byUn(t). We have@5–7#

iU~t!2Un~t!i<g~d!S a~n!t

d D n11

. ~27!

Here, g(d) depends on the particular spatial discretization
scheme used anda(n) represents the largest positive con-
stant that appears as a prefactor in the exponential of the
approximationUn(t). We finda(2)51/2 from Eq.~11! and
inspection of Eq.~12! yields a(4)5(1/2)(4a21)'0.33. It
follows that for a required spatial resolution, which deter-
mines the smallness ofd, the time step has to be chosen such
that

t<t* [
d

a~n!
, ~28!

in order to keep the error, Eq.~27!, small. As an example we
consider a wave packet in a 2D cavity that is simulated by a
T4S2 algorithm. For numerical purposes we use dimension-
less variables throughout this paper, where the unit of length
is denoted byl and the vacuum light velocityc is taken as
the unit of velocity, while the permittivity« and permeability

m are measured in units of their corresponding values in
vacuum, respectively,«0 andm0. The cavity with«51 and
m51 is of size 19315 and contains a dielectric medium
with «52.25 andm51 that has an inclined boundary. We
plot in Fig. 4 the results of simulations in which the wave
packet scatters on the dielectric medium. In the four pictures
we show the EM energy density distributions that are ob-
tained after simulation timet512.8 for a fixed mesh sized
50.1 and for four different time stepst. It follows from Eq.
~28! that the upper limit for the time step is given byt*
50.3 in this case. Fort50.4 the EM energy density distri-
bution is, in fact, seen to change dramatically such that the
results become meaningless. It should be noted that the limi-
tation, Eq.~28!, on the time step is different from the Cou-
rant number that relates the time stept to the stability of
finite-difference time-domain~FDTD! algorithms @17# that
are based on the Yee algorithm@16#. The algorithms pre-
sented in this paper are unconditionally stable by construc-
tion for any time stept and produce reasonable numerical
results up tot5t* , a time step at which the Yee-based
FDTD algorithms may have become unstable.

We conclude this section by noting that our algorithms
conserve the divergence of the EM fields only in 1D systems
but not in 2D and 3D systems. Although the initial state
C(t50) can always be chosen such that the EM fields sat-
isfy Eqs. ~2!, the time integration of the Maxwell equations
by an algorithm based on the approximationUn(t) yields
EM fields whose divergence quickly acquires a finite value
and then remains constant in time. This is shown in Fig. 5
where we plot the computed norm of the magnetic field di-
vergence in a 3D system as a function of time. The 3D sys-
tem is an empty cavity («51 andm51) of size 1.531.5
31.5 and we use theT2S2 algorithm. The reason for this
behavior of the EM field divergence is given by the fact that
the divergence operation commutes with the matrixH only
for a 1D system but not for 2D and 3D systems. However,
we stress that the corresponding error is under control and
can be reduced by using smaller time steps or algorithms
with higher-order time accuracy. This can be seen in Fig. 6,
where we compare the algorithmsT2S2 and T4S2 as a

FIG. 3. Positions of the EM field components on the 3D Yee
grid.

FIG. 2. Positions of the three TM-mode EM field components
on the 2D grid fornx59 andny55.

J. S. KOLE, M. T. FIGGE, AND H. DE RAEDT PHYSICAL REVIEW E65 066705

066705-4



function of the time stept to show that the error in the EM
field divergence vanishes for theTnS2 algorithm propor-
tional to tn.

IV. VARIABLE GRID IMPLEMENTATION

The simple spatial implementation does not provide an
optimal discretization scheme for physical systems of irregu-
lar geometrical shapes or with strongly varying permeability
and/or permittivity. In a practical implementation of such

systems the grid has to be variable with a small mesh size in
one region of the system and a large mesh size in another
region of the system. In this section we show how to imple-
ment a variable grid in such a way that the algorithms to
solve the time-dependent Maxwell equations remain uncon-
ditionally stable by construction.

For the sake of simplicity we consider a 1D system that is
discretized using a variable grid as shown in Fig. 7. In a
straightforward implementation of the variable grid we
would replace the constant next-nearest neighbor distanced
in Eqs.~16! and~17! of the simple spatial implementation by
the corresponding variable distance. It is convenient to write
this substitution in the form

d→D i ,i 11F11
d i 21,i2d i 11,i 12

2D i ,i 11
G , ~29!

whered i , j is the distance between grid pointsi andj ~see Fig.
7! and

D i ,i 11[
1

2
~d i 21,i12d i ,i 111d i 11,i 12! ~30!

is the averaged next-nearest neighbor distance. It can be eas-
ily checked that an implementation of the variable grid that
relies on the replacement Eq.~29! would destroy the skew-
symmetry property of the corresponding matrixH @see Eq.
~20!#. This is unphysical: The original form of the Maxwell
equations do have this property. However, a variable grid
implementation that does preserve the underlying symmetry

FIG. 4. Energy density distributions at simulation timet512.8
for various time stepst obtained by theT4S2 algorithm for a fixed
mesh size d50.1. The wave packet with initial parameters
(sx ,sy)5(2,1.73), (x0 ,y0)5(5,7.5), andk58 @see for details Eq.
~55! in Sec. V B# impinges on the dielectric structure from the left.
The cavity measures 19315 and contains a dielectric medium with
«52.25 to the right of the line that connects the points (8.5,0) and
(13,15). The origin (0,0) is located at the lower left corner. In
vacuum the energy density distribution is plotted in black at loca-
tions of maximum intensity scaling and white at locations of zero
intensity. Inside the dielectric medium this scheme is inverted.

FIG. 5. The norm of the divergence of the magnetic field in a 3D
empty cavity («51 andm51) of size 1.531.531.5 as a function
of time t. The computation is performed with theT2S2 algorithm
keeping the mesh sized50.1 fixed.

FIG. 6. The norm of the divergence of the magnetic field in a 3D
empty cavity («51 andm51) of size 1.531.531.5 as a function
of 1/t for the fixed mesh sized50.1. The computation is performed
with the algorithmsT2S2 andT4S2.

FIG. 7. Positions of the two TM-mode EM field components on
the 1D variable grid.
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of Maxwell equations can be constructed for a sufficiently
smooth, variable grid. In this case, the second term in the
brackets of Eq.~29! may be neglected and the replacement

d→D i ,i 115D i 11,i ~31!

may yield a resonable approximation of Eqs.~16! and ~17!
for the variable grid implementation:

]

]t
Xy~ i ,t !5

1

Am i
S Yz~ i 11,t !

D i ,i 11A« i 11

2
Yz~ i 21,t !

D i ,i 21A« i 21
D , ~32!

]

]t
Yz~ i 11,t !5

1

A« i 11
S Xy~ i 12,t !

D i 11,i 12Am i 12

2
Xy~ i ,t !

D i 11,iAm i
D .

~33!

The corresponding matrixH is seen to be skew symmetric,

H5(
i 51

n

8 F eiei 11
T 2ei 11ei

T

D i ,i 11A« i 11m i

1
ei 11ei 12

T 2ei 12ei 11
T

D i 11,i 12A« i 11m i 12
G , ~34!

and may again be separated into odd and even parts of which
the exponents can be easily calculated following the same
steps as given above in the simple spatial implementation.

It is obvious that this variable grid implementation can, in
principle, be applied in any spatial dimensiond. However, it
is in general not possible to predict how to choose a grid that
yields the best approximation to the true spectrum of eigen-
modes of any nontriviald-dimensional system. We, there-
fore, studied the criteria for the choice of suitable variable
grids in particular systems numerically and present the re-
sults for a 1D and a 2D system in the remainder of this
section.

The 1D system under consideration consists of a cavity of
lengthL510 with a constant permeabilitym51 and a vary-
ing permittivity «. The permittivity deviates from its vacuum
value («51) due to the presence of a dielectric medium with

«53 that is located in the middle of the cavity and extends
over a length of 2, as shown in Fig. 8. As a reference system
we use a simple spatial implementation with constant next-
nearest neighbor distanced50.025 and calculate the eigen-
modesvn of the corresponding matrixH. For two different
variable grids we calculate the corresponding eigenmodesṽn

and the deviationG(vn ,ṽn)512ṽn /vn relative to the
eigenmodes of the reference system. The two variable grids
have in common that the dielectric medium and the transi-
tions between«51 and«53 at both its sides is embedded
in a grid of constant next-nearest neighbor distance that
equals that of the reference system (D i ,i 115d50.025). Fur-
thermore, at the left end and at the right end of the cavity the
next-nearest neighbor distance is constant over a length of
2.5 and equals, respectively,D i ,i 1150.1 andD i ,i 1150.05 in
the two variable grids. The transitions in the variable grids
between regions of constant next-nearest neighbor distance
involve abrupt steps between

D i ,i 1150.1↔D i ,i 1150.05↔D i ,i 1150.025, ~35!

where we kept the intermediate distanceD i ,i 1150.05 over
eight grid points, and between

D i ,i 1150.05↔D i ,i 1150.025, ~36!

respectively.
In Fig. 9 we plotG(vn ,ṽn) for the first 50 eigenmodes of

both variable grids. The relative deviation is seen to increase
with the number of the frequency modes. As high mode
numbers represent high frequencies this observation simply
reflects the general fact that the accuracy of the eigenmodes
depends on the smallness of the mesh size~numerical disper-
sion!. Clearly, this also explains why the relative deviation
G(vn ,ṽn) increases up to 2% for the variable grid with
D i ,i 115$0.1↔0.05↔0.025%, while for the variable grid
with D i ,i 115$0.05↔0.025% this deviation remains well be-
low 0.5%. For the first few frequency modes, however, we
observe an increase inG(vn ,ṽn). This behavior can be re-
lated to the error that is introduced in the variable grid imple-
mentation by applying the approximation, Eq.~31!, instead
of the exact replacement, Eq.~29!. To check this statement
we plot in Fig. 10 the deviationG(Vn ,ṽn) for the first 50
eigenmodes of the two variable grids relative to the eigen-
modesVn that belong to the variable grids of the exact
implementation, Eq.~29!. We see that the increase of the
relative deviation for the first few eigenmodes is, in fact,
related to the error that is made by replacing the exact sub-
stitution, Eq.~29!, with the skew-symmetry conserving ap-
proximation, Eq.~31!. This approximation leads to oscilla-
tions of G(Vn ,ṽn) @and alsoG(v,ṽn)# that vanish with
increasing frequency mode number. From extended numeri-
cal studies~results not shown! we find that these variations
depend on several factors, such as the size in the difference
between the largest and smallest distancesD i ,i 11 of the vari-
able grid implementation and on how abruptD i ,i 11 changes
with i. In practice, it will be necessary to check the robust-
ness of numerical results obtained by a variable grid imple-

FIG. 8. The 1D cavity with the dielectric structure~solid line!
and the two implemented variable grids: D i ,i 11

5$0.1↔0.05↔0.025% ~dashed line! and D i ,i 115$0.05↔0.025%
~dotted line!.
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mentation against small changes in its parameters. Although
this may sound as a serious disadvantage, the next example
of a 2D system shows that for realistic applications it may be
by far more efficient to perform several simulation runs with
a variable grid implementation than to use the simple spatial
implementation.

The 2D system we consider is given by theL-shaped cav-
ity depicted in Fig. 11. In order to satisfy the conditions, Eq.
~3!, at the boundaries, the EM fields change very strongly
close to the sharp edge of the cavity. Large spatial changes of
the EM fields require a small mesh size. However, for the
overwhelming part of the cavity a small mesh size would
cause a waste of resources~computer memory and CPU
time!. Therefore, this system can be more efficiently simu-
lated by a variable grid implementation with an increasing
number of grid points near the edge. This is done by a uni-
form increase of the number of grid points along both thex
and they directions as is schematically drawn in Fig. 11.
Furthermore, instead of using the odd-even decomposition of
the time-evolution operator@corresponding to Eq.~24! for
the 1D system# on a square grid that would contain grid

points outside the L-shaped cavity, we perform the plane
rotations by processing a list of pairsSof the EM field vector
elements at the grid points that actually belong to the
L-shaped cavity@corresponding to Eq.~26! for the 1D sys-
tem#.

In Table I we present the results of a numerical simulation
for the eight lowest TM eigenmodes in the cavity. We used
the T2S2 algorithm imposing a simple spatial implementa-
tion with d50.003 125 and a variable grid implementation
with a mesh size ranging fromD50.05 to D50.003 125.
Very similar to the procedure described above for the 1D
system, the mesh size is decreased by a factor 0.5 and then
kept constant for several grid points to smoothen this transi-
tion before the mesh size is decreased further. Our results are
in good agreement with those obtained by the program pack-
age GDFIDL @18# for the same 2D system~see Table I!. In
Table II we show the location of the arbitrarily chosen third-
lowest eigenmodev3 for several constant and variable grid
implementations of theT2S2 algorithm. In all simulations
we setd/t510, where in the case of a variable gridd is
replaced by the smallest mesh size. The relative errorG of
the frequencyv3 is measured with respect to the frequency
v354.916 of the system with constant mesh sized
50.003 125. The numerical results obtained within the vari-
able grid implementation are in excellent agreement with the
results of the simple spatial implementation and the program

FIG. 9. Relative deviationG(vn ,ṽn) for two variable grids.

FIG. 10. Relative deviationG(Vn ,ṽn) for two variable grids.

FIG. 11. The L-shaped 2D cavity with a variable grid~schemati-
cally!.

TABLE I. The eight lowest TM eigenmodes of the L-shaped
cavity ~see Fig. 11!.

Mode n T2S2 GDFIDL

Constant Variable Constant Variable
Grid vn Grid vn Grid vn Grid vn

1 2.9989 2.9913 2.9999 2.9992
2 3.9807 3.9500 3.9740 3.9720
3 4.9164 4.8857 4.9156 4.9102
4 5.4150 5.3843 5.4077 5.4004
5 5.5837 5.5453 5.5791 5.5710
6 6.0592 6.0209 6.0580 6.0494
7 6.7649 6.7265 6.7511 6.7377
8 6.8876 6.8492 6.8797 6.8674

HIGHER-ORDER UNCONDITIONALLY STABLE . . . PHYSICAL REVIEW E 65 066705

066705-7



packageGDFIDL. TheT2S2 algorithm with the simple spatial
implementation andd50.003 125 consumes about 150 times
more CPU time and 10 times more computer memory than
the T2S2 algorithm with variable grid implementation and
D5$0.05→0.003 125%. Clearly, these numbers justify addi-
tional simulation runs that are required to check the robust-
ness of numerical results against small changes in the param-
eters of a variable grid implementation.

V. IMPROVED SPATIAL DISCRETIZATION
IMPLEMENTATION

Both conditional FDTD algorithms and the uncondition-
ally stableTnSmalgorithms suffer from numerical disper-
sion due to the discretization of continuum space on a grid
with a finite mesh size@17#. Methods to reduce numerical
dispersion are taking a grid with a smaller mesh size or em-
ploying more accurate finite-difference approximations to the
spatial derivatives. The former obviously can be also used in
the simple spatial implementation of unconditionally stable
algorithms, however, for several reasons it may be more de-
sirable to implement higher-order accurate approximations of
the spatial derivatives. For example, if one is interested in
global features of the distribution of a system’s eigenmodes,
i.e., if we want to determineall eigenvalues, a higher-order
accurate spatial derivative implementation would be strongly
preferred. The computation of a system’s eigenmode spec-
trum is performed by calculating the Fourier transform of the
inner productF(t)5^C(0)uC(t)& @1,19,20#. Using indepen-
dent random numbers to initialize the elements ofC(0), the
full eigenmode spectrum is obtained by averaging this Fou-
rier transform. Taking just a smaller mesh size for the grid in
the simple spatial implementation does not only reduce the
numerical dispersion but also gives rise to more eigenmodes
with high frequencies. In order to obtain the eigenmode
spetrum with the same spectral resolution, the sampling of
F(t) would have to be done over smaller time intervals in-
volving the computation of more data points. It is thus desir-
able to implement, instead, higher-order accurate approxima-
tions of the spatial derivatives that make a moderate use of

computer resources in terms of CPU time and computer
memory.

The procedure for the construction of higher-order ap-
proximations to spatial derivatives is standard@21#. In the
present case, we apply this procedure keeping in mind that
Maxwell equations~5! are skew symmetrical and that the
electric and magnetic field components are defined at par-
ticular grid points. The grid of ad-dimensional system with a
constant mesh size of distanced/2 between neighboring grid
points is shown in Figs. 1–3. Without loss of generality we
consider a 1D system, whereC( i ,t)5C( id/2,t) is the i th
component of the EM field vector and denotes an electric
field component for eveni and a magnetic field component
for odd i ~see Sec. III for details!. Applying the second-order
accurate central-difference scheme the spatial derivative of
the EM field componentC( i ,t) is given by

]

]x
C~ i ,t !5

C~ i 11,t !2C~ i 21,t !

d
2

d2

6
C (3)~ i ,t !1O~d 4!,

~37!

where C (3)( i ,t)[]3C( i ,t)/]x3. Similarly, using the third-
nearest neighbor EM field points at distance 3d/2, we have

]

]x
C~ i ,t !5

C~ i 13,t !2C~ i 23,t !

3d
2

9d2

6
C (3)~ i ,t !

1O~d 4!. ~38!

A fourth-order accurate approximation of the spatial deriva-
tive ]C( i ,t)/]x is now constructed in terms of a linear com-
bination of Eqs.~37! and~38!, which is chosen such that the
terms proportional toC (3)( i ,t) vanish. We obtain:

]

]x
C~ i ,t !5

9

8 S C~ i 11,t !2C~ i 21,t !

d D
2

1

8 S C~ i 13,t !2C~ i 23,t !

3d D1O~d4!.

~39!

In practice, it is straightforward to implement the improved
spatial discretization, since we can use the implementation of
the central-difference scheme for the two terms separately
and then combine the results according to Eq.~39!. The cor-
responding matrixH of the 1D system@see Eq.~20!# changes
from tridiagonal to pentadiagonal, but most importantly it
preserves its property of being skew symmetric. It should be
noted, however, that the fourth-order accurate spatial deriva-
tive introduces errors at the boundaries since the calculation
of ]C( i ,t)/]x for i 51, 2, n21, andn refer, respectively, to
grid pointsi 522, 21, n11, andn12 that lie outside the
cavity and are implicitly assumed to be zero.

It is obvious that the fourth-order accurate approximation
of the spatial derivatives can be similarly applied in systems
of any spatial dimensiond. In the remainder of this section
we study the numerical dispersion and the temporal and spa-
tial accuracies of the algorithms for various 1D and 2D sys-
tems.

TABLE II. Error in third-lowest eigenmode of theL-shaped cav-
ity ~see Fig. 11!.

Constant gridd v3 G ~in %!

0.1 4.571 7.5
0.05 4.740 3.7
0.025 4.832 1.7
0.0125 4.878 0.78
0.00625 4.901 0.31
0.003125 4.916 0

Variable gridD

0.1→0.05 4.717 4.2
0.1→0.025 4.801 2.4
0.1→0.0125 4.840 1.6
0.1→0.00625 4.878 0.78
0.05→0.003125 4.886 0.61
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A. Numerical dispersion

We illustrate the difference in the numerical dispersion
between the simple spatial implementation and the improved
spatial discretization implementation by a comparison of the
eigenmode spectra of a 1D empty cavity («51 andm51) of
length L. In 1D, the continuum wave equation for the EM
fields @2#,

F 1

c2

]2

]t2
2

]2

]x2GC~x,t !50, ~40!

is solved by the ansatzC(x,t)}cos(vt2kx1f) ~with a
phasef to distinguish electrical and magnetic field compo-
nents! yielding the linear dispersion relation between fre-
quencyv and wave numberk; v5cuku. Focusing on the
effect of the spatial derivatives on the numerical dispersion,
we assume perfect time integration of the algorithms and
impose periodic boundary conditions on the EM field com-
ponents: Cp( i ,t)}cos(vpt2kpd/21f) with wave number
kp52pp/L and 2L/(2d),p<L/(2d). Applying the
second-order accurate spatial derivative we obtain

]2

]x2
Cp~ i ,t !5

1

d2
@Cp~ i 12,t !22Cp~ i ,t !1Cp~ i 22,t !#

1O~d2!, ~41!

while for the fourth-order accurate spatial derivative we find

]2

]x2
Cp~ i ,t !5S 9

8d D 2

@Cp~ i 12,t !22Cp~ i ,t !1Cp~ i 22,t !#

1S 1

24d D 2

@Cp~ i 16,t !22Cp~ i ,t !

1Cp~ i 26,t !#1S 9

96d2D @Cp~ i 12,t !1Cp~ i

22,t !2Cp~ i 14,t !2Cp~ i 24,t !#1O~d4!.

~42!

For m52 the analytical solution of the eigenmode spectrum
for the mth-order accurate spatial derivative is given by

vp
252S c

d D 2

@12cos~kpd!#, ~43!

while for m54 we find

vp
25S c

d D 2

(
l 50

3

Cl cos~ lkpd!, ~44!

with coefficientsC05365/144,C15287/32,C253/16, and
C3521/288. We show in Fig. 12 that the dispersion rela-
tions that we obtained numerically by themth-order accurate
spatial derivative implementation for a 1D cavity of length
L54, are in excellent agreement with the corresponding ana-
lytical solutions, Eqs.~43! and ~44!. It is clearly visible that

the dispersion relation computed by the simple spatial imple-
mentation (T2S2 algorithm! suffers from numerical disper-
sion already at frequencies abovev510, whereas for a grid
with the same mesh size the fourth-order accurate spatial
derivative implementation (T2S4 algorithm! works well up
to v515.

B. Temporal and spatial accuracies

To perform a systematic study of the accuracy of the al-
gorithms as a function of the time stept and the mesh sized,
we compute the difference between the normalized exact,
C(t), and the approximate,Cn,m(t), EM field vectors as
obtained by theTnSmalgorithm:

DCn,m~ t ![iC~ t !2Cn,m~ t !i . ~45!

We first consider the propagation of a Gaussian wave
packet in a 1D empty cavity («51 andm51) of lengthL
530. At t50 the Gaussian wave packet

Ez~x,t !5exp@2~x2x02ct!2/s2# ~46!

with standard deviations52 is located atx058. For t.0
the wave packet propagates with velocityc in thex direction
until it hits the right boundary of the cavity, becomes re-
flected, and propagates in the opposite direction. To derive an
analytical expression of the exact EM field vectorC(t), we
expandEz(x,t) in the TM modes,

Ez~x,t !52 (
n51

`

an sin~npx/L !sin@np~x01ct!/L#,

~47!

Hy~x,t !5
a0

2
1 (

n51

`

an cos~npx/L !cos@np~x01ct!/L#,

~48!

with coefficients

FIG. 12. Numerical and analytical dispersion relations for the
1D cavity of length L54 as obtained from calculations with
mth-order accurate approximations of the spatial derivatives (m
52,4). In both simulations we keptd50.1 andt50.01 fixed.
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an5
2sAp

L
expF2

s2

4 S np

L D 2G , ~49!

which ensure that the wave packet satisfies the boundary
conditions, Eq.~3!. Using Poisson’s summation formula we
find the following expressions for the EM field components:

Ez~x,t !5 (
n52`

`

$exp@2~2nL1x1x02ct!2/s2#

2exp@2~2nL1x2x01ct!2/s2#%, ~50!

Hy~x,t !5 (
n52`

`

$exp@2~2nL1x1x02ct!2/s2#

1exp@2~2nL1x2x01ct!2/s2#%, ~51!

from which the exact EM field vectorC(t) is constructed
according to Eq.~18! on the 1D grid~see Fig. 1!.

In Fig. 13 we plotDCn,m(t) as a function of the simula-
tion time t for fixed values of the mesh sized and the time
stept using both theT4S2 and theT4S4 algorithms. We
find that the error increases roughly proportional to the simu-
lation time:

DCn,m~ t !52 f n,m~t,d!t, ~52!

where we used the prefactor 2 to ensure that 0< f n,m(t,d)
<1. The linear dependence ofDCn,m(t) on t is clearly vis-
ible only for the T4S2 algorithm but is also true for the
T4S4 algorithm with a much smaller slopef 4,4(t,d). Only at
particular timest when the wave packet hits the boundaries
of the cavity, the errorDC4,4(t) is seen to increase nonlin-
early in the timet and takes a value that is of the same order
as DC4,2(t). This behavior, not described by Eq.~52!, is
present in fourth-order accurate spatial derivative implemen-
tations, in which the calculation of the EM field components
close to system boundaries refer to several nonexisting grid

points. To study the errorDCn,m(t) as a function of the time
stept and the mesh sized, we compute

f n,m~t,d!5
1

2

d

dt
DCn,m~ t !. ~53!

In Fig. 14 we plotf n,m(t,d) as obtained for the 1D cavity by
the four algorithmsT2S2, T4S2, T2S4, and T4S4 as a
function of 1/t for a fixed mesh sized. For each algorithm
TnSmwe find a linear decrease of log@ f n,m(t,d)# with in-
creasing values log@1/t#. For the algorithmsT4S2 and
T4S4 we find that f 4,m(t,d)}t4, while for the T2S2 and
T2S4 algorithmsf 2,m(t,d)}t2. This numerical result is in
agreement with the rigorous upper bound on the error of the
EM field vector, Eq.~13!. For decreasing values oft, the
error in the time integration becomes negligibly small and
f n,m(t,d) reaches minimum values that are indicated by the
two lines ‘‘exactS2’’ for the algorithmsTnS2 and ‘‘exact
S4’’ for the algorithmsTnS4. In fact, these two lines repre-
sent the numerical results that are obtained for an exact time
integration andmth-order accurate approximations to the
spatial derivatives.

Next, we studyf n,m(t,d) as a function of the mesh sized
for the fixed ratiot/d50.1 to ensure that the accuracy of the
time integration remains constant. The numerical results are
plotted in Fig. 15. We see that log@ f n,m(t,d)# decreases lin-
early with increasing log@1/d# until it levels off. At this
point, the total number of operations has become so large
that it causes the numerical loss of accuracy. Outside this
regime we find for theTnS4 algorithmsf n,4(t,d)}d 4 and
for the TnS2 algorithms f n,2(t,d)}d2. In analogy to the
upper bound, Eq.~13!, the upper bound for themth-order
accurate approximation of the spatial derivatives is given by

iC~ t !2Cn,m~ t !i<Cn,mtdm, ~54!

whereCn,m is a constant.

FIG. 13. The errorDCn,m(t) as a function of the simulation
time t for fixed values of the mesh sized50.1 and the time step
t50.01. Results are shown for theT4S2 andT4S4 algorithms.

FIG. 14. f n,m(t,d) as a function of 1/t for the fixed mesh size
d50.1.
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We consider a second example to illustrate the numerical
performance of the algorithms in 2D systems. For the initial
wave packet in the 2D cavity we make the ansatz

Ez~x,y,t !5sin„k~x2x02ct!…exp@2„~x2x02ct!/sx…
10

2„~y2y0!/sy…
2#. ~55!

At t50 the wave packet is centered at (x0 ,y0) and moves at
t.0 with velocity c in the x direction. The energy of the
wave packet is fixed by the wave numberk in the oscillating
factor and its envelope is Gaussian along they direction and
has sharp edges along thex axis ~due to the exponent 10).
The 2D cavity of size 12310 with «51 andm51 contains
two objects with dielectric constants«55 and m51. The
parameters of the propagating wave packet are (sx ,sy)
5(1.66,1.29), (x0 ,y0)5(3.5,5.5), andk55. In Fig. 16 we
show the results for the error, Eq.~45!, of the T2S2 and
T2S4 algorithms with different mesh sizes relative to a ref-
erence EM field vectorC(t) that is obtained from theT2S2
algorithm at mesh sized50.025. In all simulations we kept
t50.1d fixed to compare measurements of constant accu-
racy in the time integration. In Fig. 16 we show~a! the en-
ergy distribution of the initial wave packet (t50) and~b! the
reference energy density distribution after simulation timet
56 using theT2S2 algorithm. In Fig. 16~c!–~e!, the normal-
ized spatial distribution of the error in the energy density
distribution,

Dwn,m~r ,t !5uC~r ,t !22Cn,m~r ,t !2u, ~56!

is shown for, respectively, the algorithmT2S2 with d50.1,
the algorithmT2S2 with d50.05, and the algorithmT2S4
with d50.1. We find that the improved spatial discretization
implementationT2S4 with d50.1 performs as well as a
simple spatial implementationT2S2 with half the mesh size.
The main advantage of using theT2S4 algorithm is that it
used only 20% of the computer memory and 10% of the
CPU time with respect to theT2S2 algorithm.

VI. CONCLUSIONS

We have demonstrated that the previously introduced
family of unconditionally stable algorithms to solve the time-
dependent Maxwell equations can be implemented with a
grid of variable mesh size and with a fourth-order accurate
approximation to the spatial derivatives. The performance of
the algorithms has been shown to increase significantly as
compared to the previously applied simple spatial implemen-
tation while at the same time their property of unconditional
stability by construction is preserved. Performing numerical
simulations on various physical model systems, we found
that a variable grid implementation can save orders of mag-
nitude in computer memory and CPU time for a physical
system of unregular geometrical shape or with strongly vary-
ing permeability and/or permittivity. Similar enhancements
have been obtained for the fourth-order accurate spatial de-
rivative implementation that does not only reduce the nu-

FIG. 15. f n,m(t,d) as a function of 1/d for the fixed ratiot/d
50.1.

FIG. 16. The errorDwn,m(r ,t) for various mesh sizes and algo-
rithms in a 2D cavity of size 12310. The origin (0,0) is located at
the lower left corner. Two rectangular blocks of a dielectric medium
with «55 are located at the~lower left!/~upper right! coordinates
(6.8,1.8)/(8.2,4.8) and (7.8,5.2)/(9.2,8.2), respectively. In vacuum
the energy density distribution is plotted in black at locations of
maximum intensity scaling and white at locations of zero intensity.
Inside the dielectric medium this scheme is inverted.~a! Initial en-
ergy density distributionC(r ,t)2. ~b! Reference energy density dis-
tribution C2,2(r ,t)2 at t56 using theT2S2 algorithm with d
50.025.~c! The errorDw2,2(r ,t) on the energy density distribution
at t56 using theT2S2 algorithm withd50.1. The relative devia-
tion is 26%.~d! The errorDw2,2(r ,t) on the energy density distri-
bution att56 using theT2S2 algorithm withd50.05. The relative
deviation is 5.9%.~e! The errorDw2,4(r ,t) on the energy density
distribution at t56 using theT2S4 algorithm with d50.1. The
relative deviation is 5.1%.
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merical dispersion but also improves the temporal and spatial
accuracies of the algorithms significantly. Clearly, in close
analogy to the implementation of the fourth-order approxi-
mation of the spatial derivatives, the algorithms may be im-
proved by constructing higher-order approximations. In gen-
eral, we conclude that the family of unconditionally stable
algorithms does not only preserve the fundamental symme-
tries of the time-dependent Maxwell equations but is also
characterized by a high degree of flexibility that allows one

to construct implementations that are required in different
kinds of specific applications.
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