18 research outputs found

    "Active surfaces" as Possible Functional Systems in Detection and Chemical (Bio) Reactivity

    Get PDF
    This article presents design strategies to demonstrate approaches to generate functionalized surfaces which have the potential for application in molecular systems; sensing and chemical reactivity applications are exemplified. Some applications are proven, while others are still under active investigation. Adaptation and extension of our strategies will lead to interfacing of different type of surfaces, specific interactions at a molecular level, and possible exchange of signals/cargoes between them. Optimization of the present approaches from each of five research groups within the NCCR will be directed towards expanding the types of functional surfaces and the properties that they exhibit

    Multiscale modelling of auxin transport in the plant-root elongation zone

    Get PDF
    In the root elongation zone of a plant, the hormone auxin moves in a polar manner due to active transport facilitated by spatially distributed influx and efflux carriers present on the cell membranes. To understand how the cell-scale active transport and passive diffusion combine to produce the effective tissue-scale flux, we apply asymptotic methods to a cell-based model of auxin transport to derive systematically a continuum description from the spatially discrete one. Using biologically relevant parameter values, we show how the carriers drive the dominant tissue-scale auxin flux and we predict how the overall auxin dynamics are affected by perturbations to these carriers, for example, in knockout mutants. The analysis shows how the dominant behaviour depends on the cells' lengths, and enables us to assess the relative importance of the diffusive auxin flux through the cell wall. Other distinguished limits are also identified and their potential roles discussed. As well as providing insight into auxin transport, the study illustrates the use of multiscale (cell to tissue) methods in deriving simplified models that retain the essential biology and provide understanding of the underlying dynamics

    Reconstitution of an electrogenic auxin transport activity mediated by Arabidopsis thaliana plasma membrane proteins

    No full text
    AbstractPlasma membrane proteins from Arabidopsis thaliana leaves were reconstituted into proteoliposomes and a K+ diffusion potential was generated. The resulting ionic fluxes, determined in the presence of the plant hormone auxin (indole-3 acetic acid), showed an additional electrogenic and saturable component, with a KM of 6 ÎĽM. This flux was neither detected in liposomes in the presence of indole-3 acetic acid, nor in proteoliposomes in the presence of an inactive auxin analog and was completely inhibited by 3 ÎĽM naphtylphthalamic acid, a specific inhibitor of the auxin efflux carrier. The efficiency of the reconstituted carrier and the mechanism of its regulation by naphtylphthalamic acid are discussed

    The plasma membrane proteome of Saccharomyces cerevisiae and its response to the antifungal calcofluor

    No full text
    Calcofluor is an antifungal compound known to induce structural perturbations of the cell wall by interfering with the synthesis of chitin microfibril. Proteins from a stripped plasma membrane fraction were solubilized with the neutral and non-denaturing detergent, the n-dodecyl beta-D-maltoside. Proteins were then resolved using a recently described ion-exchange chromatography (IEC)/lithium dodecyl sulfate (LDS)-PAGE procedure. Nearly 90 proteins were identified and clustered, based on their pI, molecular weight, abundance and/or hydrophobicity. This method was then applied to profile the plasma membrane response to calcofluor. The LDS-PAGE patterns obtained from whole plasma membrane proteins were similar for the non-treated and calcofluor-treated samples. However, IEC/LDS-PAGE analysis revealed subtle changes in the expression of several proteins of low abundance, in response to calcofluor These proteins include Pil1p and Lsp1p, two sphingolipid long-chain base-responsive inhibitors of protein kinases involved in signaling pathways for cell wall integrity and Rho1p, a small GTPase. It was recently hypothesized that Pil1p and Lsp1p could associate with, and regulate, the plasma membrane beta-1-3-glucan synthase, responsible for the synthesis of another major microfibril for yeast cell wall. Results are discussed with respect to both calcofluor effects on the plasma membrane proteins and the power of the IEC/LDS-PAGE procedure in the search for new potential therapeutics targets

    AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip.

    Get PDF
    International audienceNitrogen and phosphorus are among the most widely used fertilizers worldwide. Nitrate (NO3(-)) and phosphate (PO4(3-)) are also signalling molecules whose respective transduction pathways are being intensively studied. However, plants are continuously challenged with combined nutritional deficiencies, yet very little is known about how these signalling pathways are integrated. Here we report the identification of a highly NO3(-)-inducible NRT1.1-controlled GARP transcription factor, HRS1, document its genome-wide transcriptional targets, and validate its cis-regulatory elements. We demonstrate that this transcription factor and a close homologue repress the primary root growth in response to P deficiency conditions, but only when NO3(-) is present. This system defines a molecular logic gate integrating P and N signals. We propose that NO3(-) and P signalling converge via double transcriptional and post-transcriptional control of the same protein, HRS1
    corecore