33 research outputs found

    Speed of Meridional Flows and Magnetic Flux Transport on the Sun

    Full text link
    We use the magnetic butterfly diagram to determine the speed of the magnetic flux transport on the solar surface towards the poles. The manifestation of the flux transport is clearly visible as elongated structures extended from the sunspot belt to the polar regions. The slopes of these structures are measured and interpreted as meridional magnetic flux transport speed. Comparison with the time-distance helioseismology measurements of the mean speed of the meridional flows at the depth of 3.5--12 Mm shows a generally good agreement, but the speeds of the flux transport and the meridional flow are significantly different in areas occupied by the magnetic field. The local circulation flows around active regions, especially the strong equatorward flows on the equatorial side of active regions affect the mean velocity profile derived by helioseismology, but do not influence the magnetic flux transport. The results show that the mean longitudinally averaged meridional flow measurements by helioseismology may not be used directly in solar dynamo models for describing the magnetic flux transport, and that it is necessary to take into account the longitudinal structure of these flows.Comment: 4 pages, 3 figures, accepted in ApJ Letter

    Comparison of solar surface flows inferred from time--distance helioseismology and coherent structure tracking using HMI/SDO observations

    Full text link
    We compare measurements of horizontal flows on the surface of the Sun using helioseismic time--distance inversions and coherent structure tracking of solar granules. Tracking provides 2D horizontal flows on the solar surface, whereas the time--distance inversions estimate the full 3-D velocity flows in the shallow near-surface layers. Both techniques use HMI observations as an input. We find good correlations between the various measurements resulting from the two techniques. Further, we find a good agreement between these measurements and the time-averaged Doppler line-of-sight velocity, and also perform sanity checks on the vertical flow that resulted from the 3-D time--distance inversion.Comment: 22 pages of the manuscript, 5 figures, 3 tables, accepted for publication in the Astrophysical Journa

    Polar cap magnetic field reversals during solar grand minima: could pores play a role?

    Full text link
    We study the magnetic flux carried by pores located outside active regions with sunspots and investigate their possible contribution to the reversal of the global magnetic field of the Sun. We find that they contain a total flux of comparable amplitude to the total magnetic flux contained in polar caps. The pores located at distances of 40--100~Mm from the closest active region have systematically the correct sign to contribute to the polar cap reversal. These pores can predominantly be found in bipolar magnetic regions. We propose that during grand minima of solar activity, such a systematic polarity trend, akin to a weak magnetic (Babcock-Leighton-like) source term could still be operating but was missed by the contemporary observers due to the limited resolving power of their telescopes.Comment: 11 pages, 9 figures, accepted for publication in Astronomy&Astrophysic

    Atmosphere above a large solar pore

    Get PDF
    A large solar pore with a granular light bridge was observed on October 15, 2008 with the IBIS spectrometer at the Dunn Solar Telescope and a 69-min long time series of spectral scans in the lines Ca II 854.2 nm and Fe I 617.3 nm was obtained. The intensity and Doppler signals in the Ca II line were separated. This line samples the middle chromosphere in the core and the middle photosphere in the wings. Although no indication of a penumbra is seen in the photosphere, an extended filamentary structure, both in intensity and Doppler signals, is observed in the Ca II line core. An analysis of morphological and dynamical properties of the structure shows a close similarity to a superpenumbra of a sunspot with developed penumbra. A special attention is paid to the light bridge, which is the brightest feature in the pore seen in the Ca II line centre and shows an enhanced power of chromospheric oscillations at 3-5 mHz. Although the acoustic power flux in the light bridge is five times higher than in the "quiet" chromosphere, it cannot explain the observed brightness.Comment: 6 pages, 3 figures, accepted in Journal of Physics: Conference Serie

    Large-scale horizontal flows in the solar photosphere V: Possible evidence for the disconnection of bi-polar sunspot groups from their magnetic roots

    Full text link
    In a recent paper (Svanda et al., 2008, A&A 477, 285) we pointed out that, based on the tracking of Doppler features in the full-disc MDI Dopplergrams, the active regions display two dynamically different regimes. We speculated that this could be a manifestation of the sudden change in the active regions dynamics, caused by the dynamic disconnection of sunspots from their magnetic roots as proposed by Schuessler & Rempel (2005, A&A 441, 337). Here we investigate the dynamic behaviour of the active regions recorded in the high-cadence MDI data over the last solar cycle in order to confirm the predictions in the Schuessler's & Rempel's paper. We find that, after drastic reduction of the sample, which is done to avoid disturbing effects, a large fraction of active regions displays a sudden decrease in the rotation speed, which is compatible with the mechanism of the dynamic disconnection of sunspots from their parental magnetic structures.Comment: 11 pages, 9 figures, 1 table; accepted in Astronomy & Astrophysic

    Quasi full-disk maps of solar horizontal velocities using SDO/HMI data

    Full text link
    For the first time, the motion of granules (solar plasma on the surface on scales larger than 2.5 Mm) has been followed over the entire visible surface of the Sun, using SDO/HMI white-light data. Horizontal velocity fields are derived from image correlation tracking using a new version of the coherent structure tracking algorithm.The spatial and temporal resolutions of the horizontal velocity map are 2.5 Mm and 30 min respectively . From this reconstruction, using the multi-resolution analysis, one can obtain to the velocity field at different scales with its derivatives such as the horizontal divergence or the vertical component of the vorticity. The intrinsic error on the velocity is ~0.25 km/s for a time sequence of 30 minutes and a mesh size of 2.5 Mm.This is acceptable compared to the granule velocities, which range between 0.3 km/s and 1.8 km/s. A high correlation between velocities computed from Hinode and SDO/HMI has been found (85%). From the data we derive the power spectrum of the supergranulation horizontal velocity field, the solar differential rotation, and the meridional velocity.Comment: 8 pages, 11 figures, accepted in Astronomy and Astrophysic

    Characteristics of solar meridional flows during solar cycle 23

    Get PDF
    We have analyzed available full-disc data from the Michelson Doppler Imager (MDI) on board SoHO using the "ring diagram" technique to determine the behavior of solar meridional flows over solar cycle 23 in the outer 2% of the solar radius. We find that the dominant component of meridional flows during solar maximum was much lower than that during the minima at the beginning of cycles 23 and 24. There were differences in the flow velocities even between the two minima. The meridional flows show a migrating pattern with higher-velocity flows migrating towards the equator as activity increases. Additionally, we find that the migrating pattern of the meridional flow matches those of sunspot butterfly diagram and the zonal flows in the shallow layers. A high latitude band in meridional flow appears around 2004, well before the current activity minimum. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. The different components of the flow have different time-dependences, and the dependence is different at different depths.Comment: To appear in Ap
    corecore