331 research outputs found

    Enteric and manure-derived methane and nitrogen emissions as well as metabolic energy losses in cows fed balanced diets based on maize, barley or grass hay

    Get PDF
    Ruminant husbandry constitutes the most important source of anthropogenic methane (CH4). In addition to enteric (animal-derived) CH4, excreta are another source of CH4, especially when stored anaerobically. Increasing the proportion of dietary concentrate is often considered as the primary CH4 mitigation option. However, it is unclear whether this is still valid when diets to be compared are energy-balanced. In addition, non-structural carbohydrates and side effects on nitrogen (N) emissions may be important. In this experiment, diet types representing either forage-only or mixed diets were examined for their effects on CH4 and N emissions from animals and their slurries in 18 lactating cows. Apart from a hay-only diet, treatments included two mixed diets consisting of maize stover, pelleted whole maize plants and gluten or barley straw and grain and soy bean meal. The diets were balanced in crude protein and net energy for lactation. After adaptation, data and samples were collected for 8 days including a 2-day CH4 measurement in respiratory chambers. Faeces and urine, combined proportionately according to excretion, were used to determine slurry-derived CH4 and N emissions. Slurry was stored for 15 weeks at either 14°C or 27°C, and temperatures were classified as ‘cool' and ‘warm', respectively. The low-starch hay-only diet had high organic matter and fibre digestibility and proved to be equally effective on the cows' performance as mixed diets. The enteric CH4 formation remained unaffected by the diet except when related to digested fibre. In this case emission was lowest with the hay-only diet (61 v. 88 to 101 g CH4/kg digested NDF). Feeding the hay diet resulted in the highest slurry-CH4 production after 7 weeks of storage at 14°C and 27°C, and after 15 weeks at 14°C. CH4 emissions were, in general, about 10-fold higher at 27°C compared with 14°C but only after 15 weeks of storage. Urinary N losses were highest with the barley diet and lowest with the maize diet. There was a trend towards similar differences in N losses from the slurry of these cows (significant at 14°C). However, contrary to CH4, slurry-N emissions seemed to be temperature-independent. In conclusion, energetically balanced diets proved to be widely equivalent in their emission potential when combining animal and their slurry, this even at a clearly differing forage : concentrate ratio. The variation in CH4 emission from slurry stored shortly or at cold temperature for 15 weeks was of low importance as such conditions did not support methanogenesis in slurry anywa

    Effects of species-diverse high-alpine forage on in vitro ruminal fermentation when used as donor cow's feed or directly incubated

    Get PDF
    Alpine forages are assumed to have specific effects on ruminal digestion when fed to cattle. These effects were investigated in an experiment from two perspectives, either by using such forages as a substrate for incubation or as feed for a rumen fluid donor cow. In total, six 24-h in vitro batch culture runs were performed. Rumen fluid was collected from a non-lactating donor cow after having grazed pastures at ∼2000 m above sea level for 2, 6 and 10 weeks. These ‘alpine runs' were compared with three lowland samplings from before and 2 and 6 weeks after the alpine grazing where a silage-concentrate mix was fed. In each run, nine replicates of four forages each were incubated. These forages differed in type and origin (alpine hay, lowland ryegrass hay, grass-maize silage mix, pure hemicellulose) as well as in the content of nutrients. Concentrations of phenolic compounds in the incubated forages were (g/kg dry matter (DM)): 20 (tannin proportion: 0.47), 8 (0.27), 15 (0.52) and 0 (0), respectively. Crude protein was highest in the silage mix and lowest with hemicellulose, whereas the opposite was the case for fiber. The total phenol contents (g/kg DM) for the high altitude and the lowland diet of the donor cow were 27 (tannins: 0.50 of phenols) and 12 (0.27), respectively. Independent of the origin of the rumen fluid, the incubation with alpine hay decreased (P < 0.05) bacterial counts, fermentation gas amount, volatile fatty acid (VFA) production as well as ammonia and methane concentrations in fermentation gas (the latter two being not lower when compared with hemicellulose). Alpine grazing of the cow in turn increased (P < 0.001) bacterial counts and, to a lesser extent, acetate proportion compared with lowland feeding. Further, alpine grazing decreased protozoal count (P < 0.05) and VFA production (P < 0.001) to a small extent, whereas methane remained widely unchanged. There were interactions (P < 0.05) between forage type incubated and feeding period of the donor cow in protozoal counts, acetate:propionate ratio, fermentation gas production and its content of methane, in vitro organic matter digestibility and metabolizable energy. Although increased phenolic compounds were the most consistent common property of the applied alpine forages, a clear attribution to certain effects was not possible in this study. As a further result, adaptation (long-term for donor cow, short term for 24 h incubations) appears to influence the expression of alpine forage effects in ruminal fermentatio

    Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec)

    Get PDF
    Ruminants represent an important source of methane (CH4) emissions; therefore, CH4 mitigation by diet supplementation is a major goal in the current ruminant research. The objective of the present study was to use a rumen simulation technique to evaluate the CH4-mitigating potential of pure compounds in comparison with that achieved with garlic oil, a known anti-methanogenic supplement. A basal diet (15g DM/d) consisting of ryegrass hay, barley and soyabean meal (1:0·7:0·3) was incubated with the following additives: none (negative control); garlic oil (300mg/l incubation liquid; positive control); allyl isothiocyanate (75mg/l); lovastatin (150mg/l); chenodeoxycholic acid (150mg/l); 3-azido-propionic acid ethyl ester (APEE, 150mg/l); levulinic acid (300mg/l); 4-[(pyridin-2-ylmethyl)-amino]-benzoic acid (PABA, 300mg/l). Fermentation profiles (SCFA, microbial counts and N turnover) and H2 and CH4 formation were determined. Garlic oil, allyl isothiocyanate, lovastatin and the synthetic compound APEE decreased the absolute daily CH4 formation by 91, 59, 42 and 98%, respectively. The corresponding declines in CH4 emitted per mmol of SCFA were 87, 32, 40 and 99%, respectively, compared with the negative control; the total SCFA concentration was unaffected. Garlic oil decreased protozoal numbers and increased bacterial counts, while chenodeoxycholic acid completely defaunated the incubation liquid. In vitro, neutral-detergent fibre disappearance was lower following chenodeoxycholic acid and PABA treatments (−26 and −18%, respectively). In conclusion, garlic oil and APEE were extremely efficient at mitigating CH4 without noticeably impairing microbial nutrient fermentation. Other promising substances were allyl isothiocyanate and lovastati

    AZ ÉLELMISZERGAZDASÁG KÜLKERESKEDELME 2016. év I–X. hónap

    Get PDF
    A mezőgazdasági és élelmiszeripari termékek kivitele 6607 millió eurót, behozatala 4216 millió eurót tett ki 2016 első tíz hónapjában. Az agrár-külkereskedelmi forgalom 2391 millió euró aktívumot eredményezett. A kivitel értéke 1,4 százalékkal, a behozatalé 4,8 százalékkal emelkedett, az aktívum 4,1 százalékkal, 103 millió euróval elmaradt a 2015. január–októberi értéktől. A mezőgazdasági és élelmiszeripari termékek részesedése a teljes nemzetgazdasági exportból 2016 októberében 8,9 százalék, 2016 január–októberi időszakában 8,5 százalék, az importból 2016 októberében 6,3 százalék, 2016 január–októberi időszakában 6,1 százalék volt. Az agrárexport aránya 2016 január–októberi időszakában 0,1 százalékponttal alacsonyabb, míg az import aránya 0,2 százalékponttal magasabb volt, mint 2015 első tíz hónapjában

    Efficiency of monolaurin in mitigating ruminal methanogenesis and modifying C-isotope fractionation when incubating diets composed of either C3 or C4 plants in a rumen simulation technique (Rusitec) system

    Get PDF
    Mitigation of methanogenesis in ruminants has been an important goal for several decades. Free lauric acid, known to suppress ruminal methanogenesis, has a low palatability; therefore, in the present study the aim was to evaluate the mitigation efficacy of its esterified form (monolaurin). Further, 13C-isotope abundance (δ13C) and 13C-12C fractionation during methanogenesis and fermentation were determined to evaluate possible microbial C-isotope preferences. Using the rumen simulation technique, four basal diets, characterised either by the C3 plants grass (hay) and wheat (straw and grain), or the C4 plant (13C excess compared with C3 plants) maize (straw and grain), and a mixture of the latter two, were incubated with and without monolaurin (50g/kg dietary DM). Added to hay, monolaurin did not significantly affect methanogenesis. When added to the other diets (P<0·05 for the wheat-based diet) methane formation was lowered. Monolaurin decreased fibre disappearance (least effect with the hay diet), acetate:propionate ratio, and protozoal counts. Feed residues and SCFA showed the same δ13C as the diets. Methane was depleted in 13C while CO2 was enriched in 13C compared with the diets. Monolaurin addition resulted in 13C depletion of CO2 and enrichment in CH4 (the latter only in the hay diet). In conclusion, monolaurin proved to effectively decrease methanogenesis in the straw-grain diets although this effect might partly be explained by the concomitantly reduced fibre disappearance. The influence on 13C-isotope abundance and fractionation supports the hypothesis that ruminal microbes seem to differentiate to some extent between C-isotopes during methanogenesis and fermentatio

    Exploring the Conformational Landscape of Bioactive Small Molecules

    Get PDF
    By using a combination of classical Hamiltonian replica exchange with high-level quantum mechanical calculations on more than one hundred drug-like molecules, we explored here the energy cost associated with binding of drug-like molecules to target macromolecules. We found that, in general, the drug-like molecules present bound to proteins in the Protein Data Bank (PDB) can access easily the bioactive conformation and in fact for 73% of the studied molecules the bioactiveconformation is within 3kBT from the most-stable conformation in solution as determined by DFT/SCRF calculations. Cases with large differences between the most-stable and the bioactive conformations appear in ligands recognized by ionic contacts, or very large structures establishing many favorable interactions with the protein. There are also a few cases where we observed a non-negligible uncertainty related to the experimental structure deposited in PDB. Remarkably, the rough automatic force field used here provides reasonable estimates of the conformational ensemble of drugs in solution. The outlined protocol can be used to better estimate the cost of adopting the bioactive conformation

    Effects of dicopper oxide and copper sulfate on growth performance and gut microbiota in broilers

    Get PDF
    An experiment was conducted to determine the effects of two sources of copper (Cu) from copper sulfate (CuSO) and dicopper oxide (CuO, CoRouge) at three levels of inclusion (15, 75, and 150 mg/kg) on growth performance and gut microbiota of broilers. A total of 840 one-d-old male chickens (Ross 308) were weighed and randomly allocated to seven dietary treatments: negative control (NC, a basal diet without Cu addition), and the NC supplemented with 15, 75, or 150 mg Cu/kg from CuSO or CuO (12 replicate pens/treatment, 10 chicks per pen). Broilers were challenged by reusing an old litter with high concentrations in Clostridium perfringens to promote necrotic enteritis. Broiler performance was registered at d 21, 35, and 42. Excreta samples were collected at d 14, 28, and 42 for antimicrobial resistance (AMR) analyses. At d 43, one broiler per pen was euthanized to obtain ileal content for microbial characterization. Body weight d 35 and daily gain d 42 improved (P < 0.05) in CuO as Cu dose inclusion increased from 15 mg/kg to 150 mg/kg. Supplementation of 150 mg/kg of Cu from CuO decreased the abundance (P < 0.01) of some families such as Streptococcaceae and Corynebacteriaceae and increased the abundance (P < 0.05) of some commensal bacteria like Clostridiaceae and Peptostreptococcaceae. Phenotypic AMR was not different among treatments on d 14 and 28. Isolated Enterococcus spp. from broilers fed the NC diet on d 42 showed higher (P < 0.05) resistance to enrofloxacin, gentamicin, and chloramphenicol compared with Cu treatments. By contrast, the isolated Escherichia coli from broilers fed 150 mg/kg of Cu, either from CuSO or CuO, showed higher (P < 0.05) resistance to streptomycin and chloramphenicol compared to the NC. This study suggests that supplementing 150 mg/kg of Cu from CuO establishes changes in the gut microbiota by regulating the bacterial population in the ileum, which may explain the positive impact on broilers' growth performance
    corecore