4,223 research outputs found

    SS433's circumbinary ring and accretion disc viewed through its attenuating disc wind

    Full text link
    We present optical spectroscopy of the microquasar SS433 covering a significant fraction of a precessional cycle of its jet axis. The components of the prominent stationary H-alpha and H-beta lines are mainly identified as arising from three emitting regions: (i) a super-Eddington accretion disc wind, in the form of a broad component accounting for most of the mass loss from the system, (ii) a circumbinary disc of material that we presume is being excreted through the binary's L2 point, and (iii) the accretion disc itself as two remarkably persistent components. The accretion disc components move with a Keplerian velocity of ~600 km/s in the outer region of the disc. A direct result of this decomposition is the determination of the accretion disc size, whose outer radius attains ~8 R_sun in the case of Keplerian orbits around a black hole mass of 10 M_sun. We determine an upper limit for the accretion disc inner to outer radius ratio in SS433, R_in/R_out ~ 0.2, independent of the mass of the compact object. The Balmer decrements, H-alpha/H-beta, are extracted from the appropriate stationary emission lines for each component of the system. The physical parameters of the gaseous components are derived. The circumbinary ring decrement seems to be quite constant throughout precessional phase, implying a constant electron density of log N_e(cm^-3) ~ 11.5 for the circumbinary disc. The accretion disc wind shows a larger change in its decrements exhibiting a clear dependence on precessional phase, implying a sinusoid variation in its electron density log N_e(cm^-3) along our line-of-sight between 10 and 13. This dependence of density on direction suggests that the accretion disc wind is polloidal in nature.Comment: 7 pages, 5 figures. Accepted for publication in MNRAS Main Journal

    Color Engineering of Silicon Nitride Surfaces to Characterize the Polydopamine Refractive Index

    Get PDF
    A simple methodology to generate polydopamine (PDA) surfaces featured with color due to thin-film interference phenomena is presented. It is based on depositing ultra-thin films of polydopamine on a Si/Si 3 N 4 wafer that exhibits an interferential reflectance maximum right at the visible/UV boundary (∼400 nm). Therefore, a small deposit of PDA modifies the optical path, in such manner that the wavelength of the maximum of reflectance red shifts. Because the human eye is very sensitive to any change of the light spectral distribution at the visible region, very small film thickness changes (∼30 nm) are enough to notably modify the perceived color. Consequently, a controlled deposit of PDA, tune the color along the whole visible spectrum. Additionally, good quality of PDA deposits allowed us to determine the refractive index of polydopamine by ellipsometry spectroscopy. This data can be crucial in confocal skin microscopic techniques, presently used in diagnosis of skin tumors.Fil: Vega Moreno, Milena Amparo. Universidad de Salamanca; EspañaFil: Martín del Valle, Eva M.. Universidad de Salamanca; EspañaFil: Perez, Maximiliano Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Haedo; ArgentinaFil: Pecharromán, Carlos. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; EspañaFil: Marcelo, Gema. Universidad de Salamanca; Españ

    Chalcogenide nanoparticles and organic photosensitizers for synergetic antimicrobial photodynamic therapy

    Get PDF
    Synergistic antimicrobial effects were observed for copper sulfide (CuS) nanoparticles together with indocyanine green (ICG) in the elimination of wild type pathogenic bacteria (Staphylococcus aureusATCC 29213 andPseudomonas aeruginosaATCC 27853) and also opportunistic fungal infective yeast (Candida albicansATCC 10231). Furthermore, large antibacterial effects were observed for clinical isolates of Methicillin-resistantS. aureus(MRSA) PFGE strain-type USA300. This efficient antimicrobial action was attributed to the combined extra- and intracellular generation of reactive oxygen species upon light irradiation. Instead of the use of visible-light for the activation of common photosensitizers, both ICG and CuS nanoparticles can be activated in the near infrared (NIR)-region of the electromagnetic spectrum and therefore, superior tissue penetration would be expected in a potential elimination of pathogenic microorganisms not only on the skin but also in the soft tissue. In the different bacteria studied a 3-log reduction in the bacterial counts was achieved after only 6 min of NIR irradiation and treatment with ICG or CuS alone at concentrations of 40 and 160 µg mL-1, respectively. A maximum bactericidal effect againstS. aureusand USA300 strains was obtained for the combination of both photosensitizers at the same concentration. RegardingP. aeruginosa, a 4-log reduction in the CFU was observed for the combination of CuS and ICG at various concentrations. InCandida albicansthe combination of both ICG and CuS and light irradiation showed an antimicrobial dose-dependent effect with the reduction of at least 3-log in the cell counts for the combination of ICG + CuS at reduced concentrations. The observed antimicrobial effect was solely attributed to a photodynamic effect and any photothermal effect was avoided to discard any potential thermal injury in a potential clinical application. The generation of reactive oxygen species upon near infrared-light irradiation for those photosensitizers used was measured either alone or in combination. The cytocompatibility of the proposed materials at the doses used in photodynamic therapy was also demonstrated in human dermal fibroblasts and keratinocytes by cell culturing and flow cytometry studies. © The Royal Society of Chemistry 2021

    Training machine learning models with synthetic data improves the prediction of ventricular origin in outflow tract ventricular arrhythmias

    Get PDF
    In order to determine the site of origin (SOO) in outflow tract ventricular arrhythmias (OTVAs) before an ablation procedure, several algorithms based on manual identification of electrocardiogram (ECG) features, have been developed. However, the reported accuracy decreases when tested with different datasets. Machine learning algorithms can automatize the process and improve generalization, but their performance is hampered by the lack of large enough OTVA databases. We propose the use of detailed electrophysiological simulations of OTVAs to train a machine learning classification model to predict the ventricular origin of the SOO of ectopic beats. We generated a synthetic database of 12-lead ECGs (2,496 signals) by running multiple simulations from the most typical OTVA SOO in 16 patient-specific geometries. Two types of input data were considered in the classification, raw and feature ECG signals. From the simulated raw 12-lead ECG, we analyzed the contribution of each lead in the predictions, keeping the best ones for the training process. For feature-based analysis, we used entropy-based methods to rank the obtained features. A cross-validation process was included to evaluate the machine learning model. Following, two clinical OTVA databases from different hospitals, including ECGs from 365 patients, were used as test-sets to assess the generalization of the proposed approach. The results show that V2 was the best lead for classification. Prediction of the SOO in OTVA, using both raw signals or features for classification, presented high accuracy values (>0.96). Generalization of the network trained on simulated data was good for both patient datasets (accuracy of 0.86 and 0.84, respectively) and presented better values than using exclusively real ECGs for classification (accuracy of 0.84 and 0.76 for each dataset). The use of simulated ECG data for training machine learning-based classification algorithms is critical to obtain good SOO predictions in OTVA compared to real data alone. The fast implementation and generalization of the proposed methodology may contribute towards its application to a clinical routine.Copyright © 2022 Doste, Lozano, Jimenez-Perez, Mont, Berruezo, Penela, Camara and Sebastian

    Diagnosing 0.1–10 au Scale Morphology of the FU Ori Disk Using ALMA and VLTI/GRAVITY

    Get PDF
    We report new Atacama Large Millimeter/submillimeter Array Band 3 (86–100 GHz; ~80 mas angular resolution) and Band 4 (146–160 GHz; ~50 mas angular resolution) observations of the dust continuum emission toward the archetypal and ongoing accretion burst young stellar object FU Ori, which simultaneously covered its companion, FU Ori S. In addition, we present near-infrared (2–2.45 μm) observations of FU Ori taken with the General Relativity Analysis via VLT InTerferometrY (GRAVITY; ~1 mas angular resolution) instrument on the Very Large Telescope Interferometer (VLTI). We find that the emission in both FU Ori and FU Ori S at (sub)millimeter and near-infrared bands is dominated by structures inward of ~10 au radii. We detected closure phases close to zero from FU Ori with VLTI/GRAVITY, which indicate the source is approximately centrally symmetric and therefore is likely viewed nearly face-on. Our simple model to fit the GRAVITY data shows that the inner 0.4 au radii of the FU Ori disk has a triangular spectral shape at 2–2.45 μm, which is consistent with the H2O and CO absorption features in a 10−4 M ⊙ yr−1, viscously heated accretion disk. At larger (~0.4–10 au) radii, our analysis shows that viscous heating may also explain the observed (sub)millimeter and centimeter spectral energy distribution when we assume a constant, ~10−4 M ⊙ yr−1 mass inflow rate in this region. This explains how the inner 0.4 au disk is replenished with mass at a modest rate, such that it neither depletes nor accumulates significant masses over its short dynamic timescale. Finally, we tentatively detect evidence of vertical dust settling in the inner 10 au of the FU Ori disk, but confirmation requires more complete spectral sampling in the centimeter bands

    Observations of gas flows inside a protoplanetary gap

    Get PDF
    Gaseous giant planet formation is thought to occur in the first few million years following stellar birth. Models predict that giant planet formation carves a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD142527, at ~140pc, found an inner disk ~10AU in radius, surrounded by a particularly large gap, with a disrupted outer disk beyond 140AU, indicative of a perturbing planetary-mass body at ~90 AU. From radio observations, the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The vigorous stellar accretion rate would deplete the inner disk in less than a year, so in order to sustain the observed accretion, matter must flow from the outer-disk into the cavity and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations with the Atacama Large Millimetre Array (ALMA) that reveal diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments, and that confirm the horseshoe morphology of the outer disk. The estimated flow rate of the gas is in the range 7E-9 to 2E-7 Msun/yr, which is sufficient to maintain accretion onto the star at the present rate

    Angiography with optical coherence tomography as a biomarker in multiple sclerosis

    Get PDF
    Purpose To investigate superficial retinal microvascular plexuses detected by optical coherence tomography angiography (OCT-A) in multiple sclerosis (MS) subjects and compare them with healthy controls. Methods A total of 92 eyes from 92 patients with relapsing-remitting MS and 149 control eyes were included in this prospective observational study. OCT-A imaging was performed using Triton Swept-Source OCT (Topcon Corporation, Japan). The vessel density (VD) percentage in the superficial retinal plexus and optic disc area (6 x 6 mm grid) was measured and compared between groups. Results MS patients showed a significant decrease VD in the superior (p = 0.005), nasal (p = 0.029) and inferior (p = 0.040) parafoveal retina compared with healthy subjects. Patients with disease durations of more than 5 years presented lower VD in the superior (p = 0.002), nasal (p = 0.017) and inferior (p = 0.022) parafoveal areas compared with healthy subjects. Patients with past optic neuritis episodes did not show retinal microvasculature alterations, but patients with an EDSS score of less than 3 showed a significant decrease in nasal (p = 0.024) and superior (p = 0.006) perifoveal VD when compared with healthy subjects. Conclusions MS produces a decrease in retinal vascularization density in the superficial plexus of the parafoveal retina. Alterations in retinal vascularization observed in MS patients are independent of the presence of optic nerve inflammation. OCT-A has the ability to detect subclinical vascular changes and is a potential biomarker for diagnosing the presence and progression of MS
    • …
    corecore