359 research outputs found

    Transhepatic Access to the Atrioventricular Ring for Delivery of Radiofrequency Energy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73723/1/j.1540-8167.1997.tb00819.x.pd

    Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    Get PDF
    The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology

    Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.

    Get PDF
    Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta

    A Spaetzle-like role for Nerve Growth Factor β in vertebrate immunity to Staphylococcus aureus

    Get PDF
    Many key components of innate immunity to infection are shared between Drosophila and humans. However, the fly Toll ligand Spaetzle is not thought to have a vertebrate equivalent. We have found that the structurally related cystine-knot protein, nerve growth factor β (NGFβ), plays an unexpected Spaetzle-like role in immunity to Staphylococcus aureus infection in chordates. Deleterious mutations of either human NGFβ or its high-affinity receptor tropomyosin-related kinase receptor A (TRKA) were associated with severe S. aureus infections. NGFβ was released by macrophages in response to S. aureus exoproteins through activation of the NOD-like receptors NLRP3 and NLRC4 and enhanced phagocytosis and superoxide-dependent killing, stimulated proinflammatory cytokine production, and promoted calcium-dependent neutrophil recruitment. TrkA knockdown in zebrafish increased susceptibility to S. aureus infection, confirming an evolutionarily conserved role for NGFβ-TRKA signaling in pathogen-specific host immunity

    Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion.

    Get PDF
    Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection

    Polymeric nanobiotics as a novel treatment for mycobacterial infections

    Get PDF
    Mycobacterium tuberculosis (Mtb) remains a major challenge to global health, made worse by the spread of multi-drug resistance. Currently, the efficacy and safety of treatment is limited by difficulties in achieving and sustaining adequate tissue antibiotic concentrations while limiting systemic drug exposure to tolerable levels. Here we show that nanoparticles generated from a polymer-antibiotic conjugate (‘nanobiotics’) deliver sustained release of active drug upon hydrolysis in acidic environments, found within Mtb-infected macrophages and granulomas, and can, by encapsulation of a second antibiotic, provide a mechanism of synchronous drug delivery. Nanobiotics are avidly taken up by infected macrophages, enhance killing of intracellular Mtb, and are efficiently delivered to granulomas and extracellular mycobacterial cords in vivo in an infected zebrafish model. We demonstrate that isoniazid (INH)-derived nanobiotics, alone or with additional encapsulation of clofazimine (CFZ), enhance killing of mycobacteria in vitro and in infected zebrafish, supporting the use of nanobiotics for Mtb therapy and indicating that nanoparticles generated from polymer-small molecule conjugates might provide a more general solution to delivering co-ordinated combination chemotherapy

    4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess changes in right heart flow and pulmonary artery hemodynamics in patients with repaired Tetralogy of Fallot (rTOF) we used whole heart, four dimensional (4D) velocity mapping (VM) cardiovascular magnetic resonance (CMR).</p> <p>Methods</p> <p>CMR studies were performed in 11 subjects with rTOF (5M/6F; 20.1 ± 12.4 years) and 10 normal volunteers (6M/4F; 34.2 ± 13.4 years) on clinical 1.5T and 3.0T MR scanners. 4D VM-CMR was performed using PC VIPR (Phase Contrast Vastly undersampled Isotropic Projection Reconstruction). Interactive streamline and particle trace visualizations of the superior and inferior vena cava (IVC and SVC, respectively), right atrium (RA), right ventricle (RV), and pulmonary artery (PA) were generated and reviewed by three experienced readers. Main PA net flow, retrograde flow, peak flow, time-to-peak flow, peak acceleration, resistance index and mean wall shear stress were quantified. Differences in flow patterns between the two groups were tested using Fisher's exact test. Differences in quantitative parameters were analyzed with the Kruskal-Wallis rank sum test.</p> <p>Results</p> <p>4D VM-CMR was successfully performed in all volunteers and subjects with TOF. Right heart flow patterns in rTOF subjects were characterized by (a) greater SVC/IVC flow during diastole than systole, (b) increased vortical flow patterns in the RA and in the RV during diastole, and (c) increased helical or vortical flow features in the PA's. Differences in main PA retrograde flow, resistance index, peak flow, time-to-peak flow, peak acceleration and mean wall shear stress were statistically significant.</p> <p>Conclusions</p> <p>Whole heart 4D VM-CMR with PC VIPR enables detection of both normal and abnormal right heart flow patterns, which may allow for comprehensive studies to evaluate interdependencies of post-surgically altered geometries and hemodynamics.</p

    A Spaetzle-like role for nerve growth factor beta in vertebrate immunity to Staphylococcus aureus

    Get PDF
    Many key components of innate immunity to infection are shared between Drosophila and humans. However, the fly Toll ligand Spaetzle is not thought to have a vertebrate equivalent. We have found that the structurally related cystine-knot protein, nerve growth factor β (NGFβ), plays an unexpected Spaetzle-like role in immunity to Staphylococcus aureus infection in chordates. Deleterious mutations of either human NGFβ or its high-affinity receptor tropomyosin-related kinase receptor A (TRKA) were associated with severe S. aureus infections. NGFβ was released by macrophages in response to S. aureus exoproteins through activation of the NOD-like receptors NLRP3 and NLRC4 and enhanced phagocytosis and superoxide-dependent killing, stimulated proinflammatory cytokine production, and promoted calcium-dependent neutrophil recruitment. TrkA knockdown in zebrafish increased susceptibility to S. aureus infection, confirming an evolutionarily conserved role for NGFβ-TRKA signaling in pathogen-specific host immunity
    corecore