4,216 research outputs found

    Pitch and yaw motions of a human being in free fall

    Get PDF
    Human limb motions for body orientation during free fal

    Alteration of the state of motion of a human being in free fall

    Get PDF
    Orientation and attitude alteration of human body motion state in free fall studied with mathematical model

    Petroleum Transport on the Great Lakes

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/96618/1/39015087358472.pd

    Technical and Economic Feasibility of Multibarge Operations in Open Water

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/96619/1/39015087358811.pd

    DIPL 6113 AA International Financial Institutions

    Get PDF
    This course has been designed to provide a better understanding of international financial institutions (IFls), specifically, the International Monetary Fund and the World Bank. Prior to the Great Recession of 2008-09, serious questions were raised about the relevance of the IMF and the need for its traditional activity, assisting countries experiencing financial problems. The global financial crisis and subsequent sovereign debt crisis breathed new life into the IMF\u27s, if not the World Bank\u27s, role in the international financial system. The background and activities of the Fund and the World Bank will be examined with emphasis on arguments about their relevance and proposals for reform. Discussion of reform of the international financial architecture will be addressed. We will also learn how to analyze sovereign risk, the risk that a sovereign government will default on its financial obligations, a major preoccupation of the IFis, as well as of private sector creditors. Finally, we will learn how to utilize IMF, World Bank and other publications and data in our analysis

    Using a Fermionic Ensemble of Systems to Determine Excited States

    Get PDF
    We discuss a new numerical method for the determination of excited states of a quantum system using a generalization of the Feynman-Kac formula. The method relies on introducing an ensemble of non-interacting identical systems with a fermionic statistics imposed on the systems as a whole, and on determining the ground state of this fermionic ensemble by taking the large time limit of the Euclidean kernel. Due to the exclusion principle, the ground state of an nn-system ensemble is realized by the set of individual systems occupying successively the nn lowest states, all of which can therefore be sampled in this way. To demonstrate how the method works, we consider a one-dimensional oscillator and a chain of harmonically coupled particles.Comment: 14 pages, Latex + 4 eps figure

    Monte Carlo evaluation of FADE approach to anomalous kinetics

    Full text link
    In this paper we propose a comparison between the CTRW (Monte Carlo) and Fractional Derivative approaches to the modelling of anomalous diffusion phenomena in the presence of an advection field. Galilei variant and invariant schemes are revised.Comment: 13 pages, 6 figure

    Distribution of Time-Averaged Observables for Weak Ergodicity Breaking

    Full text link
    We find a general formula for the distribution of time-averaged observables for systems modeled according to the sub-diffusive continuous time random walk. For Gaussian random walks coupled to a thermal bath we recover ergodicity and Boltzmann's statistics, while for the anomalous subdiffusive case a weakly non-ergodic statistical mechanical framework is constructed, which is based on L\'evy's generalized central limit theorem. As an example we calculate the distribution of Xˉ\bar{X}: the time average of the position of the particle, for unbiased and uniformly biased particles, and show that Xˉ\bar{X} exhibits large fluctuations compared with the ensemble average .Comment: 5 pages, 2 figure

    A non-perturbative determination of Z_V and b_V for O(a) improved quenched and unquenched Wilson fermions

    Get PDF
    By considering the local vector current between nucleon states and imposing charge conservation we determine, for O(a)O(a) improved Wilson fermions, its renormalisation constant and quark mass improvement coefficient. The computation is performed for both quenched and two flavour unquenched fermions.Comment: 3 pages, 4 figures, Lattice(2002)(improve

    Long-Tailed Trapping Times and Levy Flights in a Self-Organized Critical Granular System

    Get PDF
    We present a continuous time random walk model for the scale-invariant transport found in a self-organized critical rice pile [Christensen et al., Phys. Rev. Lett. 77, 107 (1996)]. From our analytical results it is shown that the dynamics of the experiment can be explained in terms of L\'evy flights for the grains and a long-tailed distribution of trapping times. Scaling relations for the exponents of these distributions are obtained. The predicted microscopic behavior is confirmed by means of a cellular automaton model.Comment: 4 pages, RevTex, includes 3 PostScript figures, submitted to Phys. Rev. Let
    corecore