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ABSTRACT

Two 1limb maneuvers, one producing pitch motion, the other yaw
‘motion, are analysed. Numerical results are given for representative

examples.
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INTRODUCTION

This report deals with 1limb motions that can be used by a man to
alter the orientation of his body in space when he is inAa state of free
fall without initial rotation. (A man is said to be in free fall or’
"weightless"” when the only forces acting on his body are gravitational
forces. )

It is helpful to introduce at the outset three intersecting, mutually
perpendicular lines and three planes which are fixed relative to the
torso of the man. In accordance with familiar aeronautical usage, these
lines are called pitch, roll, and yaw axes. The yaw axis has the same
general orientation as the spine, and the pitch axis is perpendicular to
the plane of gymmetry of the torso. The location of the point of inter-
section of the axes is selected by the analyst in any convenient manner,
and may differ from one analysis to the next, The plane determined by
a pair of axes is desighated by the name of the axis normal to it; e.g.,
the pitch plane is the plane normal to the pitch axis.

Two maneuvers are examined. The first, treated in Part I, produces
rotatiqn of the torso about the pitch axis; the second, discussed in
Part II, is a yaw maneuver. (A previous report (see [1]) contains an
analysis intended primarily for the study of roll motions.) Section 1
of each Part contains a description of the maneuver, Section 2 deals

with the analysis, and numerical results are presented in Section 3.



I. PITCH MOTTON
1. Description

The maneuver to be studied is discussed in [2] and is covered by
the analyses in [1] and [3]. The present formulation is more concise
than those in the aforementioned references, and the discussion of
results is more extensive.

During the maneuver, the arms are held straight at the elbows and
perform a rotary motion with respect to the torso, remaining symmetri-
cally disposed with respect to the pitch plane at all times. The
longitudinal axis of each arm travels on the surface of an imaginary
torso-fixed cone whose vertex is at the shoulder. The arm motion can
be described in terms of the cone semi-vertex angle and the orientation
of the cone axis relative to the torso, any physically attainable
orientation being permissible, as illustrated by the examples in Fig.
1.1. (Symmetry considerations show that these cone parameters need to
be specified for only one of the arms.) The legs must be kept fixed
relagtive to the torso and symmetrically located with respect to the
pitch plane.

Consider the motion of the torso (and legs) during one cycle of
the maneuver. The sense of pitching of the torso is opposite to that
in which the armg travel on the surfaces of the cones. A reversal in
' the sense of motion of the arms produces a reversal in the sense of
pitching.

Prior to starting the maneuver, the subject may have his limbs
disposed in any way satisfying the requirements of symmetry with respect

to the pitch plane, and the arms may then be brought to the starting

-2 -
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position in any mgoner compatible with this requirement. After an
integra} nuMbgr of cyclés of the maneuver have been performed, fhe arms
can be returned to their initial positions by retracing the paths
followed in bringing thémnté‘the,starting poéitionsu Any pitching of

the torso obtained while starting will be nullified during the return.

2. Analysis

For purposes of analysis, the human is modelled as a SyStem -8 of
three rigid bodies. One of these, designated A, represents the torso,
head; and legs. The remaining two;' B ‘and B', each represent an arm.
B and B' are connegted to A at points O and Of (sée Fig. 2.1),
which represent shouldéf joints-

Body A7is presuméd to be symmetric With4respect to the pitch plane;
go that its mass center A¥ lies in this ﬁlaneo Points O and 0O' are

symmetrically located at a distance a

o to either side of the pitch

plane, and the line P passing through them is designated the pitch
axis. The yaw axis Y lies in the pitch plane and 1s fixed in body

A, 1intersecting P at point C. As will be seen later, it is conven-
ient to choose the orientation of Y in the pitch plane in such a way
that Y passes through,the‘mass center of a body comprised of only the
torso and ﬁeadg but not the legs. The pogition of A¥ relative to C
is specified by a distance a5, measured along Y, and a distance ays
measured from the roll plane. The mags of A 1is mA, and the moment
of inertia of A about a line through A¥*¥ parallel to P is IA°
Unit vectors

2y 92’ 23 are fixed in A parallel to the roll, pitch;

and yaw axes, respectively.
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Body B possesses an axis of symmetry, designated L. The mass center
B* of B is located on L at a distance b from point O. The mass

of B 1is mB, the moment of inertia of B about L is IB and the

2)
moment of inertia of B about any line passing through B¥* and normal
to L 1is Iﬁ. The geometry and inertia properties of B' are identical
to those of B.

The kinematical analysis in the sequel involves two lines, M
and M', which are fixed with respect to A and are located symmetri-
cally with respect to the pitch plane. Line M passes through O and
its orientation is determined by angles € and ¢ as shown in Fig-
2.1. (The lines forming 6 1lie in the yaw plane, and’those forming ¢
lie in a plane normal to the yaw plane.) Symmetry considerations permit
one to locate M'. ‘Unit vectors m and gf are‘parailel to M and
M', respectively-.

The equation .of motion for this system will be obtalned by employing

a consequence of Lagrange's equations for cases in which § is in free

fall and possesses no initial angular momentum, namely

oK _ 0 (2.1)

ok
where é is the time derivati&e of the angle £ Ybetween Y and a
line that is fixed in an inertial reference frame F and is normal
to P; and K, +the kinetic energy associated with motions of S rela-

tive to the system mass center, can be expressed as



The first three terms on the right-hand-side of this equation represent

the rotational kinetic energies of A, B and B'. TFor example, if

Igg I? are principal moments of inertia of B for B¥, and aP

l)

B
l’ (D21

ag are components of the angular velocity of B in F when this
angular velocity is referred to principal axes of B for B¥*, then
B 1 ~B, B2 B, B,2
= = 2.
k=3 [Bp? + hwp” + Thwn?) (2.3)
The laét three terms in Eq. 2.2 reflect the motions of the mass centers

of A; B, and B'. TFor instance, if XB is the velocity of B¥* rela-

tive to the system mass center S¥%, +then
1 2
Kw‘i =2 "pUp) (2.4)

In the following kinematical analysis, only pitch motions of A
are considered. Consequently, the angular velocity of A in F can

be expressed as
(2 = gie (2"5)

Symmetry considerations demand that a5 be parallel to a principal axis

of A for A¥. Hence IA is a principal moment of inertia and +

l °
K = 51 g (2.6)

T

Numbers beneath equal signs are intended to direct attention to
corresponding equations.



~ The motions of B and B' are described in terms of the "coning”
motion outlined in Sec. 1, lines M and M being the axes of the
cones. Line I intersects line M at. O, thereby defining a plane
N, and the angle P between L and M remains constant throughout
the mgneuver. Mutually perpendicular unit vectors El’ 92’ 25 are
fixed in N, with b parallel to L and oy normal to N.

If the angle between N and a plane passing through M and normal

to the yaw plane is designated O, then the angular velocity of N
in A 1is given by

Agy-= &.g (2.7)

When & increases from O to 2x, L +travels once around the
surface of a cone of semi-vertex angle PB. During this motion, B
must rotate in N in such a manner that no twisting of the arm relative
to the torso occurs at the shoulder. This can be accomplished by

specifying the angular velocity of B in N as follows:
w = -an (2.8)
The angular velocity of B in P can be expressed as
FB | N B AwN FA (2.9)

In order to resolve this vector into components parallel to Dy, 92, n,,

we note that

=Y o8 171,23 (2.10)

n.
-1 -
§=1

where the ci. of interest are



c = - gin O cos @& -cosB sin ¢ sind&

12
¢y = COS 0 sin B sin O +sinBcosPcosP+ sinb sin PsinPcos &
Cop = - sin BginP sin G+ cosB cosPcos P+ cosO sin® sin Becos ¢
c25 = - ginQPcos P+ cos®P sin Bcos O
052 = - sin fcos PsinO - cosBcosPsinP+ cosf sinPcogPecos &
(2.11)
Furthermore,
m = cos B n, sin P 1, (2.12)

It now follows that (see Egs. 2.9, 2.5, 2.10, 2.7, 2.12, 2.8)

o = [écl2]gl+ [E".cg2 +a(cos B-1)In,+ [5052 - sin Blng  (2.13)

and, since El’ _132, 51_5 are parallel to principal axes of B for B¥,

1{:2,.B, 2 2 B 2
Ki = E{g [Ty (e ptesp)tTop,]
(2°5;2°15) + 2 é&[]’:gcee(cos ﬁ—l)—I]ic52sin B]

+ dE[I]isinQB + Ig(cos 6-1)2]} (2.14)

In a similar fashion, an identical expression is obtained for
KBI
5
The velocity v, of A¥ relative to 8% 1is the time derivative

A
: A%/ g% . : :
in F of r > the position vector of A¥ relative to 8¥%; i.e.,



v = éi" */S*

Ya (2.15)

Symmetry requires that 8% lie in the piteh plane. This fact makes

*/q%
it possible to express _gA /S as
2 .
A%/ 5% e [ B¥*/A¥ B*/ A%
- - - + o .
X m +2mB S S & 35] (2.16)
B*/A% | o ) .

where T is the position vector of B¥ relative to A%, which,

by reference to Fig. 2.1, is seen to be given by

B*/ A%
= -+
r a, &) ta,a,*t 8y 8z +bn, (2.17)

Consequently, (see Egs. 2.15, 2.16, 2.17, 2.10, 2.11, 2.5)

de :
B ° ° _ _ —-2—.5- °
Iy T m +2mB { v+ o3t8s >] é1+[§(b021 2,)b 55 O‘]%}

and it follows that

om 2
K =5 'ﬂ}% {éz[bg( 25 o5y )20 (2 85C057%¢ 21)+ai+a§]
(2.4,2.18) +2é&[b2(025%'1‘ ‘21 aa) b(é o ?a— U
caee[(Za) . (22) ) (2.19)
Next, v, is lven by
vy = P04 A (2.20)

- 10 -



where
X bn (2.21)

and

o/A* F A
v = @t X (—al a) tay ey tas a5) (2.22)

Thus (see Egs. 2.20, 2.18, 2.21, 2.13, 2.10, 2.22, 2.5)
m de
A [" Co1
v ={———— £(be )+ab B a
—~ + prad
B m, 2n% 25 - 1

+ {db sinB e, .la

12°20
m dc o
A S . o3
+{:mA+2mB [g(al beyy) +ab 'EE?J} &5 (2.23)
Kﬁ is, therefore, given by
2
o= 1 {éz( A ) hz(e J+2n(c o )+( -+2ﬂ
v > "y m_+2 21"%03 Coz37Cn % /T 8 oy
(2.4,2.23) A"

° 0 a a a
. 251‘5;2%55 [ 2‘ as a21 %3_225, +b(a5 ;ia a) “525 }
o o i
+ a2b2[31n pec 12 (m +2mB) (( f*'( 22?] )]}

(2.24)

_ ¥
and the expression for KE is identical. The kinetic energy associated
with motions of S relative to S¥ can now be expressed as (see Egs-

2.2, 2.6, 2.14, 2.19, 2.24)

- 11 -



o f L2 )

K= ¢ {5'+ T ( 12 32)”2‘322
v 2 2

T ﬁemB [b (cpp* 23) 2b(azc 25'31°21)+(a1+35)]}

+ 2§oc{ (cos B-1)- e

2 22 gin B

1°32
m ) de de
* @\%;;[b (025 ﬁ% o1 aoz5 * b(‘&?_l ag ¥ '§§é al”}

~2{ B B B, .2, .2
+ O QIg(l—cos B)+(Il L, *mpb )sin™B

Bc,) dc__ .2
e A f () )

The equation of motion can thus be formulated as

(™ B, 2 2 B_2
§{2_+I( 12 52)”: %02
m
W' [L2, 2 2
* m, +2m [b (021+'°2§)+2 b(a. 82Cn3 78 ¢y )t (a )]}

+Ot{B (cos B-1) - Ic

2 20 sin 5

1732
o de de de,
+m+2mB[b2( 25'?%' 021'£2)+b(a5‘5§i+a1‘£2]}

=0 (2.26)
(2.1,2.25)
and, eliminating time and making the substitutions

-
m, *2my

_ B _ 2
J—Il I]23+Mb



2
E, = cos 6 cos o[J sin B -Ig(cos B-1)]
E, = sin Blsin 6(J cos B+ I]23 —MbaBSin @) -cos @ Mb al]

cos Osin B[Mba, - sin @(J cos B+ 1123)]

3
5

o
It

2, 2 B 2 2 2 2 2
= e +85) + T2 + in"0- +
F, =3 M(al a3) I, J{cos B(sin @-cos @ cos 8)+cos 0]
~ 2 Mb cosB (sincpa5 +cos Pgin®d al)
F, =J sinEB(singe - singcp cosge)
. . . 2
F3 = 2J sinBcos0 sin® sin B

F, =2 sinBcos® (J cosP sin Ocos® - Mb a.l)

F5 =2 ginB [Mb(a.acoscp - a;sin® sin Q)-J cosgesin Pcos P cos B
‘ (2.27)
one finds that
+ inO + a
_@_Q _ El E2s1n EBCOS (2 28)
do 2 . . )
Fl+ cmos Oé+F5sn.nOtcosOc+ F1+51n06 + Fgcosa

Integration of this equation for O <« < 2rn yields Af, the
pitch reorientation per cycle of the maneuver. An analytical solution
is not readily available, but a computer program for numerical inte-
gration was written and is described in Sec. L.

Before turning to ’;he discussion of results, it is worth noting
that in one special case, namely when the cone axes coincide with the
pitch axis (6 = ¢ = 0), an analytical solution can be obtained

easily. OSpecifically, after making the definitions

- 13 -



, 2,2
£ = +
ay a5

& = arec cos ;l = gre gin ;2

n=0-3%

E=J sin25'+I§(l—cos B)

F = IA/Z + Mme° +Ig + J sinp

G = Mbdsin B (2.29)

one can in this case bring Eq. 2.28 into the form

dé¢ ~  E-G sinm
an - : (2.30)
F -2G sinn

and integration between the limits zero and 2x now leads directly to

At = ﬂ[l » —2EF } (2.51)
JF2~4G2
Equation 2.28 (or 2.31) cannot be used until suitable values have

been sgelected for the inertia properties. Moreover, IA, a.» and a

1 )
depend on the position in which the legs are held; as well as on the
inertia properties of the limbs. The computer program discussed in
Sec. 4 accomodates a wide class of leg positions, ang the following
table provides values suitable for two leg positions. These values

are based on the Hanavan model for the 50 percentile USAF man (see [4]).

- 14 -



Table 2.1

Synbol Value Units
Arm
my 0.288 slugs
b 0.903 feet
r 0.1325 slug-t.2
B 2
12 0.002335 slug-ft.

Torso, Head, and Legs

ILegs in Pogition Legs in Tucked
of "Attention" Position (see Sec. 4 for details)
my 4 .458 4,458 slugs
a, 0 0.309 feet
25 1.481 1.027 feet
fX 2
8.150 3.895 slug-Ft.

- 15 -



3. Results

It ig of interest to observe how the pitch obtained per cycle, Aﬁ,
varies as a function of the cone semi-vertex angle, B. In Fig. 3.1,
At is plotted as a function of B for three cases:
(1) +the maneuver performed with the legs straight as‘in the
position of "attention”,
(2) +the maneuver performed with the legs tucked close to the
bod.yT , and
(3) +the maneuver performed with the legs tucked and a five-pound

weight (0.1556 slugs) held in each hand.

In all three cases, the coane axes are paragllel to the pitch axis, Eq-.
2,51 is used, and the requisite inertia properties are taken from
Table 2.1.

It can be seen that pitch increases monotonically with P. Since
the construction of the shoulder joints places an upper limit on B
once a particular cone axis has been chosen, the maximum possible B
being about 45 deg. when the cone axes are parallel to the pitch axis,
a man with his legs straight can expect only ébout 11 deg. of pitch
when performing a cyéle of the maneuver in this fashion. Tucking the
legs in markedly improves the effectivenessof the maneuver. qu ingtance,
with B equal to 45 deg., the value of At is doubled to 20 deg. by

tucking .

1

A detailed explanation of this "tucked” position is presented
in the third paragraph of Sec. k.

- 16 -
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The addition of fivé—pound weights to the hands more than doubles
Ak; e.g., if the weights are used while the legs are tucked and B
equals 45 deg., 52 degrees of pitch per cycle can be obtained.

The location of the cone axes relative to the torso has a signifi-
cant effect on the amount of pitch obtained per cycle. In Fig. 35.24,
At is plotted as a function of 6, with @ = 0 (gee Fig. 2.1 for 6
and @), for two values of B, i.e., 20 and 45 deg., when the legs
are tucked. (The computer program described in Sec. 4 was used to make
the calculations.) At 1is seen to decrease with increasing 6 until,
when 6 becomes equal to 90 deg. (i.e., when the cone axes are parallel
to the roll axis), no pitech is obtained. This suggests that it is
advantageous to maintain the cone axes nearly parallel to the roll plane.

When the cone axes are 'lowered' in the roll plane, Af may increase
or decrease. This can be seen in Fig. 3.2B, which shows the pitch per
cycle as a function of @, with 6 = 0, the legs tucked, and B again
equal to 20 deg. and 45 deg. Both curves possess a maximum when @
ig about 15 deg. The relative flathessz of the curves between O and
30 deg. is important since physiological constraints at the shoulder
joint are such that the semi-vertex angles £ that can be used become
larger as ¢ 1is increased. For instance, while the upper bound on B
is about 45 deg. with ¢ equal to zero, it’is closer to 60 deg. when
® 1is 50 deg. .Consequently,-the greatest amount of pitch per cycle
obtained without weights in the tucked position is about 32 degrees,
and this is achieved by taking £ equal to 60 deg., ¢ equal to 30

deg., and O nearly equal to zero.

- 18 -
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The limb motions just described are reasonable ones for an unen-
cumbered man in a "shirt sleeve" environment. For an astronaut in a
pressure suit, the range of mobility may be sharply reduced, and the
added mass of the suit may have a substantial effect on performance.

In particular, AE geems to be most sensitive to changes in the disbance
from the shoulder to the mass center of the arm and to the distance
from the line joining the shoulders to the mass center of the torso;

head, and legs.

4.,  Computer Program

This section contains documentation for a FORTRAN IV, level H,
computer program which performs the numerical integration necessary to
obtain a solution to Eq. 2.28. The program has been used on the
IBM 360/67 at Stanford University.

The program also serves a second function, namely computation of
the quantities IA, a)s 35, and mA which are dependent on the inertia
properties and positions of the legs and torso. Body A 1s assumed to
be composed of five bodies, Bl; B2, Bé, B5, and.Bé where Bl repre-

sents the torso, neck, and head, B2 and Bé represent the upper legs,
and B5 and B% represent the lower legé and feet (see Fig. 4.1).
Two restrictions are placed on leg positions:
(1) the longitudinal axes of all leg segments must remain
parallel to the pitch plane, and
(2) the legs must remain symnetrically located with respect
to the pitch plane.

{
Consequently, all permissible leg positions can be described by

- 20 -
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specifying two angles, HIP and KNEE, where HIé is the angle between
the roll plane and the longitudinal axis of an upper leg segment,

and KNEE is the angle between the longitudinal axes of the upper and ?
lower leg segments. HIP and KNEE are zero when the legs are straight.
In the tucked position, HIP is Q0 deg. and KNEE is 150 deg-

Input data are submitted to the computer on cards in the following
manner. The first data card contains inertia properties of an arm and
of the torso, neck, and head regarded as a single rigid body. The
second data card contains inertia properties of the upper and lower
leg segments and an integer, NUMBER, which designates the number of
angle input data cards that follow. Each of these angle input data
cards contains five angles in degrees, i.e.; BETA, THETA, PHI, HIP,
KNEE; and they may be followed by a new palr of cards listing inertis
properties, the second of these containing a new NUMBER and being
followed by angle input data cards. The procedure can thus be repeated
any number of times. Table 4.1 lists the quantities appearing in the
data cards in detail. The inertia properties may be introduced in any
consistent system of mase and length units. Appropriate British

Engineering System units are indicated in Table 4.1.

- 22 -



Data Card # 1

Symbol In ASy?bo% L
Program nalysis or
in Fig. 4.1
MB g
B b
TB1 B
=t
B
B2 I,
M1 ml
Ll L,
i
Lil LL,
1
I1P T
P

TABLE P.k.1

FORMAT (8F10.3)

Units Definition
slugs mass of entire arm and hand
feet distance from shoulder to mass

center of arm

2

slug-£t. moment of inertia of B for B¥
about any line normal to L
2 . R
slug-ft. moment of inertia of B about L
slugs mass of torso, neck, and head
feet distance from line connecting
shoulders to mass center of torso,
head, and neck
feet distance from line connecting
shoulders to line connecting
hips
2 . i
slug-ft- moment of inertia of torso,

head, and neck about a line
parallel to P and passing

through their combined nass
center

- 23 -



TABLE P.4.1 cont.

Data Card # 2 FORMAT (7F10.3,110)
. Symbol in
Symbol in Analysis or Units Definition
Program . f
in Fig. 4.1
M2 m, slugs magss of upper leg segment
L2 VL2 feet distance from hip to mass

center of upper leg
Li2 LL Teet distance from hip to knee

slug—ftog moment of Inertia of upper
leg about a 1line parallel to
P and passing through its
mass center

2P I

S AE

M3 m5 slugs mass of lower leg and foot

I3 L5 feet distance from knee to mass
center of lower leg

3 2 . .

I5P IP slug~-f£t. moment of inertia of lower leg
about a line parallel to P and
passing through its mass center

NUMBER (integer) the number of angle input data
cards that follow
Angle Input Data Cards FORMAT (5F10.2)
BETA B degrees cone semi-vertex angle
THETA ) degrees angle between P and the projec-
) tion of the cone axis on the
yaw plane

PHT ) degrees angle between cone axis and yaw
plane

HIP HIP degrees angle of bending at hip

KNEE KNEE degrees angle of bending at knee

- 24 .



The program is composed of three parts; a main program and two
REAL, FPUNCTION subprograms. The main program reads input data, computes
the requisite constants (such as those in Eq. 2.27), and writes the out-
put. The subprogram FUNCT provides the single, first-order differeantial
equation (Eq. 2.28) which is integrated for O << 2x by subprogram
QUADS3 . QUADS? is a Stanford Computation Center library subprogram
which numerically integrates a single integrand of one variable between
upper and lower limits, with specified accuracy. A listing of the entire
program is contained in Appendix 1. A sample page of output is listed
in Appendix 2. Thig contains the values of inertia properties appropriate

for the Hanavan model of the USAF 50 percentile man (see [4]).

- 25 -



II. YAW MOTION

1. Description

The 1imb movements to be discussed were suggested by Jaﬁes Jones
of the NASA Ames Research Center. The description and illustrations
that follow, deal with a maneuver performed with the legs. However,
the description applies also to a maneuver performed with the arms (but
not with the arms and legs together.)

In gll cases; the limbs remain straight at the knees and elbows,
and the pair of limbg that is not used must remain Tixed relative to
the torso in such a way that the yaw axis is a principal axis of inertia;
e.g., 1f the legs are used, the arms may be kept at the sides, as in a
position of "attention".

The maneuver is performed in two phases. For definiteness, suppose
that a rotation of the torso to the left is desired. Then phase 1 begins
with the right leg extended forward from the torso, and the left leg
extended rearward, through equal angles BO (see Fig. 1.14): The right
leg is swept to the right and then to the rear (relative to the torso)
while the left leg is swept leftward and forward (see Figs-1.1B to 1.1E);
that is; the longitudinal axis of each leg moves on the surface of an
imaginary, torso-fixed cone whose vertex is at the hip and whose axis
is parallel to the yaw axis. In the course of this "coning” motion, no
twisting of the leg occurs. - Thus, the toes always polnt nearly forward.
At the conclusion of phase 1, the right leg is extended rearward and the

left leg forward relative to the torso (see Fig. 1.1E).
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In phase 2, the legs travel simultaneously in planes parallel to
the pitch plane until each leg has returned.to the position it occupied
(with respect to the torso) at the beginhihg of phase 1 (see Figs.1l.1F
through l.li). The entire cycle may then be repeated.

Consider the behavior;of the torso during this maneuver. As phaée
1 progresses, the torso rotates in an inertial reference frame to its
left about the yaw axis, as desired, while the orientation of the yaw
axis remains fixed. During phase 2, the torso turns back to the right,
but this regression is not sufficient to nullify the rotation obtained
in phase 1. A net rotation to the left is thus obtained from each
complete cycle of the maneuvef. The direction of rotation can be reversed
by starting phase 1 with the left leg forward, rather than the right one.

An astronaut may be in a position of "attention" prior to starting
the maneuver. The starting position for phase 1 may then be attained
by moving the legs in planes parallel to the pitch plane. This will
cause a regressive rotation of the torso about the yaw axis. After an
integral number of cycles of the maneuver have been completed (a cycle
consists of one performance of phase 1 and phase 2), the legs may be
returned to a position of "attention", and the resulting yaw motion

then nullifies the regressive rotation obtained while starting.

2. Analysis

For purposes of analysis, the human is modelled as a system S8 of
three rigid bodies. One of these, designated A, represents the torso,
head, and arms. The remaining two, B and B', each represent a leg.
B and B' are connected to A at points O and O, which represent

the hips (see Fig. 2.1).
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The yaw axis ¥ 1s presumed to coincide with a principal axis of
A for its mass center A¥. The pitch axis is chosen so that points O
and O 1lie thereon, each at a distanéé a from Y. The anaiysis in
the sequel involves two additional lines fixed in A, namely M and M',
which are parallel to Y and pass through O and O', respectively.
Body A has a mass m, and a moment of inertia IA about Y. Mutually
are fixed in A parallel to the

)

perpendicular unit vectors a5 8y &
roll, yaw, and pitch axes respectively.

It is assumed that bodies B and B' each possess an axis of
symmetry . + The axis of minimum moment of inertia of B for its mass
center is designated L, and the associated principal moment of inertia
has the value Iga ‘The moment of ineftia of B about any line perpen-
dicular to L and passing through-'B* is I?, and the mass of B is
Mg« Line L ©passes through 0, and the distancekfrom B¥ to O is
b. The inertia properties of leg B' are identical to those of B.

As different varlables are used for the mathematical description
of the two phases of the maneuver, two analyses are required. In both

cases, confining our attention solely to yaw motions of A, we exploit

a consequence of lagrange's equations of motion, namely the fact that

éIE:o (2.1)

dE

* The maximum and intermediate principal moments of inertia of a leg
for its mass center differ from each other by less than 1% in the
Hanavan model (see [4]).
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where é is the time derivative of the angle & between the roll axis
and a line fixed in F normal to the yaw axis, and K dis the kinetic
energy associated with motion of § relative to the system mass center,

which can be expressed as

K=Ki+K:i+KB'+KA+K5+KB' (2.2)

w v v

The first three terms on the right-hand-side of this equation represent

the rotational kinetic energies of bodies A, B, and B' respectively,"

whereas the last three reflect the motions of the mass centers of A,
FB

B, and B'. For example, if "  , the angular velocity of B in T,

is expressed as

. B B ”
W =wlBl+w2£2+%£5 (2=))

where Bl’ EQ: 35 are unit vectors, each parallel to a principal axis of

B for B¥*, and I?, Ig, I? are the corresponding principal moments of
inertia, then

B_1[.B,B.2, B, B2 . B, B2

K= 5 (1) + T, + 150wy "] (2.4)

and, if 5 denotes the velocity of B¥ relative to the mass center

g% of 8, then

K = 3 ) (2:5)

Turning to the kinematical analysis for phase 1, we hypothesize

that A has a simple angular velocity in F, i.e.,

F °
QA = £ g

o (2-6)
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Since Y is a principal axis of A, and F@A is parallel to ¥,

1 _A:2
K> =5 T (2.7)
(2.4,2.6)

The motions of B and B' are described in terms of the "coning"
motion outlined in Sec. 1. We regard line M as the axis of a cone
on whose surface L moves. The angle BO between L. and M remains
fixed, and if P 1is the plane determined by L and M, and mutually

perpendicular unit vectors are fixed in P, with

217 Py B3 B

parallel to L and p5‘ normal to 7P, then Bl’ are related

2o B3
to &y ig’ _@5 as indicated in Table 2.1, where O is the angle

between P and the pitch plane.

Table 2.1
2, 8o | &z
By | cos 5ocosa sin BO cos ﬁoslna
Py | -sin B,Ocosa cos BO -gin 5051na
p5 -sin O 0 cos &
The angular velocity of P in A is given by
AF - -G a (2.8)
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Leg B must rotate in P about L in order to avoid twisting in
a physically impossible manner, as meﬁtioned in Sec. 1. A suitable
rotation of B in P results if the dngular velocity of B dn P is

taken to be
@ =0ap, (2“-9)
The angular velocity of B in F 1is then given by
Eé? Fé?'*AQF + EQA

°

=0 R, -xaytt g, (2.10)
(2.9, 2.8, 2.6)
or, in view of Table 2.1, by
FB B B
@ =y P+, Py (2.11)
(2.10)
where
B S N s
W = (¢-a)sin B, (2.12)
and
B o ° ' d
w, =0 + (E-Q)cos B (2.13)
o]
Consequently
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1 B, B.2 B, B2
KZ =5 (Il + L) ]
(2.4)
= %{52 [I}fsineﬁoﬂgeoseﬁo]
(2.12,2.13) . :
Y —2§a[Ifsin260+Igcosgﬁo-Igcos Bo]

+ 67 [Tysin’B +Tocos B _+I,(1-2cos B,)]) (2.14)

. H
In the same manner, an identical expression is obtained for Ki o
§
Evaluation of Kf;, Ki, and Kg necessitates determination of
Ypr Yo and Vpis the velocities relative to 8% of the mass centers

of A, B, and B'. 1In phase 1, the position of S* remains fixed in

A, so that v, vanishes. v, can be expressed as

A -B
vy = 7270 4 /5 (2.15)
where
R N 2,) (2.16)
and, since S¥%¥ is fixed in body A and lies on line Y,
XO/S_* = F_(QA X (az_a_3) (2.17)

Referring to Table 2.1, one can thus obtain (see Egs. 2.15, 2.16, 2.10,

2.17, 2.6)
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Vg T [éa+(é-&)b sin Bosin a]él

-[(£-)b sin B cos O!]_zg,_5 (2.18)
gnd it follows that

1 2. 2,2 2
_ 4 - . " X .

Ki 5 mB{é [a”+b " sin BO 2ab sin 5051n.a]

(2.5,2.18)
b2 . 2 . .
-2E0[b sin Bo+ab sin Bos1n o]

2
+ o [%sin B 1] (2.19)
!
The expression for KE is identical to that for K5° Hence

A
2[1 B 2 B B ]
K' § 5 12 mBa + +me )51n B 2mBab51n.ﬁ sin O

(2.2,2.7,2.14,2.19)
- - + + ]
2§a[ 2(1 cos B ) (I me )51n B, meabsin ﬁ sin o
°2[ B B B 2y .. 2 ]
+ - + - .
o7 21, (1-cos B,) (I]-Ijtmgb )sin B (2.20)
and the dynamical equation of motion is

A

A1 B 2,, B B 2, . 2 . . ]
=+ T+ -+ +

&[2 I2 mBa +(Il I2 me )sin Bo 2mBab51nﬁ051n o

- &[Ig(l—cos 50)4"(I?—I§+mﬁb2)sin2ﬁd+mBat>sin.@osin a]

=0 (2.21)

(2.1,2.20)
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Dependence on time can be eliminated and, making the substitutions

3} (%—A— + 1‘2 + mBagl + (Iimlgmeg) sineﬁo

2‘mBa b sin Bo

) Ig(l-c'os 60)+(I]i3’-1§+m]3b2)sin260
Py = (2.22)
EmBab sin Bo

one can relate the yaw angle £ +to the cone "sweep" angle Q@ by means

of the differential equation

i .
ign”pl-&wéwslna

da Py * sin O

(2.23)

(2.21,2.22)

This equation can be integrated in closed form for 0 <o < x to yield
an expression for A&l, the change in yaw during phase 1, as a function
of the inertia properties and the semi-sngle of limb spread:

2p,~p .
2k, = —275 + mi 2 {% - tan_l(“——-——l ’} (2.2k)

’ 2
Pe"l Pa"’l

(2.23)

In phase 2, the legs move parallel to the pitech plane. A con-
venient wvariable is B (sge Fig. 2.2), the angie between L and M
(or L' and M'). B ranges from «-BO to BO,

In the kinematical analysis of phase 2, Kﬁ‘) is again furnished

by Eq. 2.7. The angular velocity of B in F may be written as
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=W + W (2.25)

where F@A is given by Eg. 2.6 while

AP B 8 (2.26)

If unit vectors El’ 13_2; 35 are fixed in body B, with 32 paralliel

to L and 13_5 parallel to the pitch axis, so that they are related

to 295 8o §_L_5 as sghown in Table 2.2, then

F ° : ’ ~
o’ = € sin B by +E cos B, + By (2.27)

(2.25,2.6,2,26)

and, since ]31, 22, 35 are paraliel to principal axes of B for B¥,

Ki = %Ea(lzsin25 +I§coszﬁ) +I‘-§fégj (2.28)
(2.4,2.27)

1
An identical expression is obtained for Kz o

Table 2.2
gy as &z
P_l cos B sinB 0
9_2 ~sin P cos P 0
25 0 0 1
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In this phase, Kﬁ does not vanish. It is, however, independent

of & and therefore does not contribute to the equation of motion. IB is
%
again given by Egq. 2.15, and.i? /o by Ed. 2.16; but Eq. 2.17 must be

replaced with a relationship that reflects the motion of 8% in A. Thus

® . . m .
Vg = (Ea+bBcos B) 8 + afé-m—;bsinﬁﬁ a,
£b sinPa, (2.29)
Consequently,
lei - %- m_B{ég[a2+'b28in2B]
(2.5,2.,29) oo
+ 2tBlab cosB]
+ ée[bgcos:EB + (.__%.__) 2b2sin25]} (2.30)
and the expression for Kﬁl is again identical. Hence
(R ¢ BBy en]
(2.2,2.7,2.28,2.30)
+ 2§é{mBab cosB]
2[B_ .2 2 gy 2 2 }
+ B |Ij+m b cos B + |——=—] b sin B (2.31)
[ 1 (mA+2mB) }

The appropriate dynamical equation is again Eg. 2.1, and, when

time is eliminated and two non-dimensional constants and 4

9

are defined as
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(2.32)

the relation between yaw and limb position is provided by the differen-

tial equation

Bo g ol (2.33)
qytsin B
(2.1,2.31,2.32)

The change in yaw during phése 2, A@2, is obtained by integrating

Eq. 2.33 for -BO‘S B < BO:

-2q sin P
ﬁﬁg = l,tan-l (____JZ’ (2.34)
Vo ‘/?1_2-
(2.33)

The total yaw rotation per cycle of the maneuver, AE, is the
sum of A@l and A@e. With Pys Py 935 Uy @S defined in Egs.

2.22 and 2.%2, the yaw per cycle (in radians) is thus given by

N [n ( )] Py 1(Sin Po
=3

z r—“
(2.24,2234) - (2.35)
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In Sec. 1, it was mentioned that the maneuver could be performed
either with the arms or with the legs. Different values for the inertia
properties must be used, depending upon which limbs are employed. Table
2.3 shows representative values for the two cases. These values aré

based on the Hanavan model for the U.S. Air Force 50 percentile man

(see [4]).

Table 2.3

Leg Maneuver Arm Maneuver Units

(Arms at sides) (Legs parallel to yaw axis)
IA .50 . 3895 slg.ft.°
a .252 665 ft,

837 .288 slg.

b 1.353 .903 ft.
If .5625 .1%25 slg.-ft.°
o L0193 .002335 s1g.-ft.”

3 Results

It is of interest to know how the yaw obtained per cycle, AE,
varies as a function of the semi-angle of leg spread, BO. In Fig. 3.1,
Nt is plotted as a function of BO for three cases: *

(1) +the maneuver performed with the legs while the arms are

held at the sides,
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(2) the maneuver performed with the arms while the legs are
parallel to the yaw axis, and

(3) the maneuver performed with the arms when a five-pound
weight (.1556 slg.) is held in each hand.

(The inertia properties are those for the Hanavan model of the 50
percentile USAF man, as listed at the end of the last section.)

It can be seen that yaw increasesvmonotonically with Bo' of
course; the construction of the human hip and shoulder joints places
an upper bound on Boo For the iegs, a maximum of 30 deg. is reasonable,
whereag for the arms Bo may be as large as 45 deg. Consequently,
realistic values for the maximum yaw obtainable per cycle are T2 deg.
with the legs and 3% deg. with the arms. Holding a five~pound weight
in each hand improves the performance, but not spectacularly, =a
reasonable upper limit for the yaw per cycle obtainable with five-poind
weights being 39 deg.

Use of the legs can be seen to be more effective than that of the
arms. However, occasions may arise in which the arms are the more
couvenient limbs. For example, constraints imposed by an astronaut's
pressure suit might be such as to render the arms more mobile than the
legs.

In conclusion, it is Wofth noting that it is possible to perform a
maneuver in which the arms and the legs are used simultaneously. However,
this case 1s not covered.by the analysis of Sec. 2, and the reader should
be aware that the results plotted in Fig. 3.1 are not additive. In fact,
rough calculations indicate that such a maneuver would be less effective

than the one involving the legs alone.
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DO OON

i

120

Dok o

Appendix 1

PITCH MOTICN FROM SYMMETRIC RCTARY MOTICN OF THE ARMS
MARK SCHER - STANFORD UNIVERSITY AUGUST 1968

THIS PROGRAM COMPUTES THE FPITCH OBTAINEC BY PERFORMING ONE CYCLE
OF SYMMETRIL RDOTARY MOTION OF THE ARMS,

DECLARATIONS:

REAL PITCH, BETE,THETA PHIHIP,KNEE, RAD/ 1. 745329E-02/,
MEyByIB1,IB2, Ml,L1,LLY,12P, M2,L2,LL2,12P, M3,13,13P,
SBECBE,STH,CTH,ySPH,CPH,SHI ,CHI , SBE2,CBE2,STH2,CTH2,CPH2,
MA,AL,A3,IA, JoMM, E1,E2,E3, F1,F2,F3,F4,F5,

Y3 4R71 4R73,R91 ,R93,RCM3

INTEGER NLVL, NUMBER

COMMON E1,EZ2yE3, F1,F2,F3,F4,F5

EXTERNAL FUNCT

WRITE FERDING
WRITE (6,110}
WRITE (€,120)

FORMAT (117, 'PITCH MOTIGN PRODUCEC BY SYMMETRIG ROTARY 1,
1 *MCTION OF THE ARMS'Y/ 0t/
2 *CDEFINI TIONSz¢/
3 'O INERTIA PROPERTIES:®
“/ M8 - M4SS CF ENTIRE ARM § HAND!
5/ B - DISTANCE FRCM SHOULGER TG CM, CF ARM?
671 IR1 - T2ANSVERSE MOMENT OF IMERTIA OF ARM FOR ITS CMe!
T/ 182 - LONGITUDINAL MCMENT OF INERTIA OF ARM FOR ITS Myt
g/ M1 - MASS CF TORSO, NECK & HEAD! .
9/ L1 - DISTANCE FROM LINE JOINING SHOULDERS TO TORSO €Me'
ase LLL - DISTANCE FRCM LINE JOINING SHCULDERS TO LINE ¢
By *JOINING HIPS? ,
cre I1P - MOMENT CF INERTIA CF TORSO ABOUT PITCH AXIS THRU
D, * TORSD CMa*
E/° M2 - MASS CF UPPER LEG?®
F/t L2 - CISTANCE FRCM HIP TC CM. OF UPPER LEG®
G/ LL2 - DISTANCE FRCM HIP TG KNEE®
B/ 12F - MCMENT OF INERTIA OF UPPER LEG ABOUT PITCH AXIS *
1, *THRU ITS CMo!
FORMAT (
1 M3 - MASS CF LOWER LEG (& FOOT)!
2/ L3 - CISTANCE FRCM KNEE TO CMo OF LOWER LEGY
3/ 13P - MOMENT CF INERTIA OF LOWER LEG ABOUT PITCH AXIS °
4, *TERU ITS CM,!
&/ 'OANGLES (IN DEGREES) 1
6/ PITCH - AMOUNT OF PITCH PER CYCLE OF MANEUVER!

Pitch Motion Program Listing
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1/ BETA ~ SEMI-VERTEX ANGLE OF CONES SWEPT DOUT BY ARMS!

8/°* THETA -~ ANGLE BETWEEN PITCH AXIS AND PRCJECTION COF COME ¢
Sy SAXIS ON YAW FLANE?®
YA PHI - ANGLE BETWEEM CZCNE AXIS ANC YAW PLANE®
B/ HIP - ANGLE BETWEEN THIGH AND TCRSO (POSITIVE FCRWARD)?
c/* KNEE ~— ANGLE BETWEEN SHFANK & THIGH (POSITIVE REARWARD)® )
c
C ‘
C REAL INERTIA PROPERTIES
1 REI\C (5.21(1,5N€3=9€3,FRR=9¢) NEyB,IElyIEZ, MlyleLL.‘.yIlp
210 FORMAT (8F 1. 3) .
REAL (5,4220,END=9D, ERR=Qj} MZy L 2,LL2,12P, M3,0L3,13P, NUMBER
220 FORNMAT (T7F1Ca3,1101
c
C WRITE CUT INERTIA PROFPERTIES AMC LABEL COLUMNS
WRITE(6,1375) MB,B,T1E1,182, M LY, LLY,I1P, M2,L2,LL2,12P, M3,L3,13P
130 FORMAT (sOv/ | TQINZRTIA PRCPERTIES:V/ ‘
1 ' CBRM: MP’ ='1F7D‘i’ ' B =1, F7,4,
Z ' IBL =t 4FT7,4, ¢ 1B2 =% ,F9,6/
3 ' TORSO: MY ="3F 7.4, LY =9,F7.4,
4 ’ LLYI ='4F7.4, ? I1P =9,F8, 5/
g ' UPPER LEG: M2 =¥ yFTak, ! L2 =%, FTsb,
6 ' tL? ='9F7.1’1 ' IZD ='1:80 57
7 ¢ LOWER LEG: M2 =0, FTs4%y ! L3 =%, FT7s4,y
g 23K,V 3P =1 ,FE, 5/
9 LAV BETA THETA PHI HIP KNEES,
& ' PITCH®)
C
CO 20 I=1,NUMBER
REAL (54230 ,END=90,ERR=99) BETA, THETA, PrI, HIP, KNEE
230 FORNMAT (5F1Gs 2)
¢
C CCMFLTE TRICGC FUNCTICAS FCR INPUT ANGLES
SBE = SIN(BETA*RAD)
CBE = COS(BETA*RAD)
STH = SIN(THET2%RAD)
CTH = COS(THETA%RAD)
SPH = SIN(PFI#RAD)
LPH = COS{PHI*RAD)
SHI = SIN(HIP*RAD)
CHI = COS{FIP*RAD)
SBE2 = SBE=*SBE
LBEZ = (BE»CBE
CPHZ = (FH*CPH
STH2 = STH%STH
LTHZ = CTHALTH
C
L COMPUTE INERTIA PRCPERTIES CF SEGMENT 2

MA = M1 + Z,0%(M2 ¢+ M3)
Y3 = LYy -~ L1

R73 = Y3 4 L2%CHI

R71 = L2#SHI '

RG3 = Y3 + LL2*CHI + L3*COS{(HIP-KNEE)I*RAD)
RGL = LL2*SHI + L3*=SIN({HIP-KNEE)*RAD)
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RCM32 = 2,0%(M2%R73 + M3%RG3) /MA

Al = 2,D%(NM2%RT) + N3%RIL)I/MA
A2 = RCM3 + L1
Ia =

I1P # 2,0%(12P + I3P) 4 MIX(RCMISRCM3 + AL*A])

+ 2.0%M2%( (RT1-AY }E(RT71-22) + (R73-RCM3BI*(RT73-RCM3) )
+ 2oNAM3%( (RG1-A1)%(RGL-AL) + (R93-RCM3B )% (RG3-RCM3) )

OEFINE INTEGRAND CONSTANTS (SEF EQSe 227}

MM = MARMB/(MA + 2,02MB)
J = Bl - IB2 + MM%EXE

TA/2a0 + 182 + MME(AT®A14A3XAT) ¢ JH{CREZ%(STH2-CPHZ¥( TH2)

El = CPHRCTH*{ J%*SBEZ + IB2%(1,0-CBE) )
£2 = SEEX( STH*{ J*CBE + [B2 — MM#B*A2*SPH) -~ MMxBXAL%[PH }
E3 = SPERCTHE( MM%B*A3 - SOHX(JXCBE + IB82) )
FlL =
+ LTHZ) = 2%MM*B%(CBEX(SFH*A3 + CPH*STH#*AL)
F2 = JASBEZA{STH2 -~ CTH2#5PH#SPH)
F3 = 2 PEJ%STHRCTHRSPHESBED
Fo = 2,0%8BERCTHR{ J*CBEXSTHRCPH - MM*B%AY )
F5 =

PERFORNM INTEGRATION

2AASBEX{ MMHBH(A3%CPh — ALXSPHASTH) — JICREXSPHRIPH%CTH2 )

PITCH = ~GUADS3(FUNCT, Qo0, €.283185, 1la.0E~4, NLVL) /RAD

WRITE 16,140) BETA, THETA,PHIHIP, KNEE, PITCH

FCR¥AT (' %,5F10.2,F15,53)

IF (NLVL oNF, 223 WRITE {(6,150) NLVL

FORMAT {®"+%,73X, "MAXLEVEL
CONTINUE

GO 10 1

END CF LCATE, SKIP PACE
WRITE {€,1€0)

FORMET (1%}

RETLRN

END OF MAIN PITUH PROGRAM
END

OF QUADS3 EXCEEDED'214,* TIMES?H)
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IO N0 GTO

REAL FULNCTION FUNCT(ALPHA)

THIS SUBPRCGRAM PROVILCES THEE CIFFERENTIAL EQUATION RELATING PITCH
TO YSWELP' CF THE ARMS ON IDENTICAL SYMMETRIC CCNES

REAL £1.E2,E3y FlaF23F34F4,F5, SA,.MA, ALPHA

COMMON E1,E2,E3, F1,F2,F3,F4

SIN(ALPHA)

EFINE TERMS
A =
2 = COS{ALPHA)

s )

FORV EG. 2.28
FUNCST = —~( EL+4E2%SA+E2%(CE )
RETURN

END OF REAL FUNCTION FUNCT
END

REAL FUNCTION QUADS3(FUNCT,

SINCGLE INTEGRATION (ACAPTIVE
REAL FUNCT, LOWER, UPPER,
INTEGER NLVL

1 F5

/ { FL4F2ACARCA+FINRLARSA4FL &S A+FE*C A )

LCWER, UPFERy EPSLCN, NLVL)

¢+ NONRECURSIVE)
EPSLCN

APPROXIMATES THE IANTEGRAL OF THE FUNCTICN FUNCT(X) BETWEEN
THE LIMITS OF LOWER AND UFPER BY APPLYING SIMPSON®*S RULE AND
RCMBERG CORRECTICN TO VARIOUS LENGTH SUBINTERVALS AS DICTATED
BY THE INTEGRAND AND THE TCLERANCE EPSLCN. NLVL IS SET NON-
ZERC IF CERTAIN CONDITICNE ARE NOT MET,

CTALLING SEQUENCEs»so

2=QUACS3 (FUNCT sLOWERUFPER, EPSLCN,NLVL)

PAREAMETERS a0
FUNCT REAL FUMTION
SUBPROGRAM
LOWER, REAL VARIABLE
UPFER SHORT PRECISION

EPS REAL VARIABLE
SHORT PRECISION
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THE NAME OF THE SUBPROGRAM THATY
COMPLTES THE VALUES OF THE
INTEGRAND

THE LOWER AND UPPER LIMITS QF
THE INTEGRATION

ERROR TOLERANCE



ALVL FULL WCRD INTEGER SET TO THE NUMBER CF TIMES THE
MAXIMUM SUBDIVISION LEVEL WAS
REACFED

L IBRARY PROGRA™M NUMBER (G1ls
JOHN He WELSCH (SLACH
JANLARY 26,1967

YOS OO TSy

INTEGEF LEVEL, MINLVL/3/, MAXLVL/24/, RETRNU(BD), I
REAL VALINT*8(50,2), MX(5Z),y RX{58), FMX{(30), FRX(50),
i FMRX(50), ESTRX{501, EPSX(50)
%% TC CHANGE MAXIMUM DESCENT LEVEL, SET ALL 57'S ABOVE TO NEW LEVEL
REAL Ls Ry FLy FML, FM, FMR, FR, EST, ESTL, ESTR, ESTINT,
i AREEL, AB2RERX8, M, COEF, ROMBRG*8, EPS
T %% SET UP PARAMETERS FCR INITIAL C£ALL OF SUBINTEGRAL &
LEVEL = &
MVL = D
ABAREA = (.0
L LOWER
R UPFER
FL FUNCT (L)
FM FUNCTA(Ga 5% (L+R) )
FR FUNCT (R)
EST Ca @
EPS EPSLON
C *%* PROCEDURE SUBINTEGRAL(Ls Ry FL, FM, FRy EST, EPS)
Fokok CCMPARE ESTIMATE WITH SUM OF Twhi SUBESTIMATES (ESTL & ESTR)
109 LEVEL = LEVEL+)
VM = Qo5 (L+R)
LOEF = R-L
L *x* CFECK FOR INTERVAL COLLAPSE
TF({CEF.NELT) GO TC 159
ROMBRG = EST
co TO 30D
15 F¥L = FUNCT(DWS5*(L+M))
FMR = FUNCT{{.5%(M+R))
£STL {FL$4 JDAFMLEFM ) FLOEF
ESTR (F¥+4,0¥FNR+FRYXCOEF
ESTINT = ESTL+ESTR
ARE® = ABS(ESTLI4ABS(ESTR)
ABAREA = AREA+ABAREA-ABS(ESTI
C #*¥% CHECK FOR MAXIMUM LEVEL
IF(LEVEL.NE-MAXLVL) GG TO 200
NLVL = ALVL+1
ROMERG = ESTINT
GC TC 350
r %x%x CHECK TOLERANCE AND MINIMLM LEVEL
200 TF((ABS(EST-ESTINT)LGTL(EFS*ABAREA)) L0OR,
1 (LEVELaLT.NINLVLY} GO TO 400
. %%% ACCEPT RCMBERG CORRECTION AS VALUE OF SUBINTEGRAL
ROMERG = (1o6DI*ESTINT-EST) /15,0
¢ #%%x ASCEND ONE LEVEL
206 LEVEL = LEVEL-1

it
(I T 1

i ou

&y

[T
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(@]

Rk
ok e

430

%%

ko

I = RETRN(LEVEL)
VALINT(LEVEL, I) = RAOMERGC
GO TO (40, 6:43Ch, 1

CESCENL ONE LEVEL AND EVALUATE LEFT HALF SUBIMNTFGRAL

SAVE ITEMS NFEDEL TG EVALUATE RIGHT BALF SURINTEGRAL
RETRN(LEVEL) = 1

MXLLEVEL) = M

RX{LEVEL)Y = R

FMX(LEVEL) = FM

FVRX(LEVEL)} = FMR

FRX{LEVEL) = FR

ESTRX{LEVEL) = ESTR

EFSX{LEVEL) = EPS

EPS = EPS/1,4

CALL SLBINTEGRAL

R =W

FR = FM

FM = FML
EST = ESTL
CG 10 1a9

CALL SUBINTEGRAL TO EVALULATE RIGHT HALF SUBINTEGRAL

RETRN(LEVEL) = 2
L = MX{LEVEL}
R = RX{LEVEL)

= FMX{LEVEL)
FM = FMRX{LEVEL)

= FRX(LEVEL)

= ESTRX{LEVEL)

EPS = EPSX{LZVEL)
GO TO 14¢

ADD BCTH HALF SUBINTEGRALS ANLC ASTEND ONE LEVEL
ROMBRG = VALINT(LEVEL, I )+VALINT(LEVEL,2)
IF(LEVELLCTSl) GO TO 343

FINALLY AT LEVEL ONE WIThk THE ANSWER

QUADS3 = RCMBRG /12,

RETLRN

LAST CF SUBROUTINE GQUALS3
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