612 research outputs found

    Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles

    Get PDF
    Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini’s conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam model the singular dynamic method introduced by Renard. A particular emphasis is given in the use of a restitution coefficient in the impact law. Finally, various numerical results are presented and energy conservation capabilities of the schemes are investigated

    Sharing success - understanding barriers and enablers to secondary prophylaxis delivery for rheumatic fever and rheumatic heart disease

    Get PDF
    Background: Rheumatic fever (RF) and rheumatic heart disease (RHD) cause considerable morbidity and mortality amongst Australian Aboriginal and Torres Strait Islander populations. Secondary antibiotic prophylaxis in the form of 4-weekly benzathine penicillin injections is the mainstay of control programs. Evidence suggests, however, that delivery rates of such prophylaxis are poor. Methods: This qualitative study used semi-structured interviews with patients, parents/care givers and health professionals, to explore the enablers of and barriers to the uptake of secondary prophylaxis. Data from participant interviews (with 11 patients/carers and 11 health practitioners) conducted in four far north Queensland sites were analyzed using the method of constant comparative analysis. Results: Deficits in registration and recall systems and pain attributed to injections were identified as barriers to secondary prophylaxis uptake. There were also varying perceptions regarding responsibility for ensuring injection delivery. Enablers of secondary prophylaxis uptake included positive patient-healthcare provider relationships, supporting patient autonomy, education of patients, care givers and healthcare providers, and community-based service delivery. Conclusion: The study findings provide insights that may facilitate enhancement of secondary prophylaxis delivery systems and thereby improve uptake of secondary prophylaxis for RF/RHD

    Bio-functional textiles: Combining pharmaceutical nanocarriers with fibrous materials for innovative dermatological therapies

    Get PDF
    In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the dierent dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted

    Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint lithography of block copolymers

    Get PDF
    arXiv:1403.2250v1Directed self-assembly of block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO) thin film was achieved by a one-pot methodology of solvent vapor assisted nanoimprint lithography (SAIL). Simultaneous solvent-anneal and imprinting of a PS-b-PEO thin film on silicon without surface pre-treatments yielded a 250 nm line grating decorated with 20 nm diameter nanodots array over a large surface area of up to 4' wafer scale. The grazing-incidence small-angle x-ray scattering diffraction pattern showed the fidelity of the NIL stamp pattern replication and confirmed the periodicity of the BCP of 40 nm. The order of the hexagonally arranged nanodot lattice was quantified by SEM image analysis using the opposite partner method and compared to conventionally solvent-annealed block copolymer films. The imprint-based SAIL methodology thus demonstrated an improvement in ordering of the nanodot lattice of up to 50%, and allows significant time and cost reduction in the processing of these structures.The research leading to these results received funding from the European Union FP7 under the project LAMAND (grant agreement n° 245565), NANOFUNCTION (grant agreement no. 257375, FP7-ICT-2009-5) and by the Spanish Ministry of Economics and Competitiveness under project TAPHOR contract no. MAT2012-31392 (Plan Nacional de I + D + I (2008–2011)Peer Reviewe

    Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint lithography of block copolymers

    Get PDF
    Directed self-assembly of block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO) thin film was achieved by one-pot methodology of solvent vapour assisted nanoimprint lithography (SAIL).Comment: 12 pages, 4 figures, paper accepte

    The zDHHC family of S-acyltransferases

    Get PDF
    The discovery of the zDHHC family of S-acyltransferase enzymes has been one of the major breakthroughs in the S-acylation field. Now, more than a decade since their discovery, major questions centre on profiling the substrates of individual zDHHC enzymes (there are 24 ZDHHC genes and several hundred S-acylated proteins), defining the mechanisms of enzyme-substrate specificity and unravelling the importance of this enzyme family for cellular physiology and pathology

    Septin 9_i2 is downregulated in tumors, impairs cancer cell migration and alters subnuclear actin filaments

    Get PDF
    International audienceFunctions of septin cytoskeletal polymers in tumorigenesis are still poorly defined. Their role in the regulation of cytokinesis and cell migration were proposed to contribute to cancer associated aneuploidy and metastasis. Overexpression of Septin 9 (Sept9) promotes migration of cancer cell lines. SEPT9 mRNA and protein expression is increased in breast tumors compared to normal and peritumoral tissues and amplification of SEPT9 gene was positively correlated with breast tumor progression. However, the existence of multiple isoforms of Sept9 is a confounding factor in the analysis of Sept9 functions. In the present study, we analyze the protein expression of Sept9_i2, an uncharacterized isoform, in breast cancer cell lines and tumors and describe its specific impact on cancer cell migration and Sept9 cytoskeletal distribution. Collectively, our results showed that, contrary to Sept9_i1, Sept9_ i2 did not support cancer cell migration, and induced a loss of subnuclear actin filaments. These effects were dependent on Sept9_i2 specific N-terminal sequence. Sept9_i2 was strongly down-regulated in breast tumors compared to normal mammary tissues. Thus our data indicate that Sept9_i2 is a negative regulator of breast tumorigenesis. We propose that Sept9 tumorigenic properties depend on the balance between Sept9_i1 and Sept9_i2 expression levels
    corecore