47 research outputs found

    Is Cell Viability Always Directly Related to Corrosion Resistance of Stainless Steels?

    Get PDF
    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn–Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn–Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals

    Fabrication of Nanostructured Medical-Grade Stainless Steel by Mechanical Alloying and Subsequent Liquid-Phase Sintering

    Get PDF
    Cataloged from PDF version of article.This article focuses on the microstructure of medical-grade P558 (ASTM F2581) stainless steel produced by mechanical alloying and liquid-phase sintering. Rietveld X-ray diffraction and transmission electron microscopy reflect that the mechanically alloyed stainless steel powder is a nanocrystal dispersed amorphous matrix composite.Mn-11.5 wt pct Si eutectic alloy as additive improves densification of the synthesized P558 alloy via liquid-phase sintering mechanism. X-ray mapping shows that after sintering at 1323 K (105°C) for 1 hour, a uniform distribution of dissolved Mn and Si is achieved. Moreover, the development of a nanostructured, fully austenitic stainless steel after sintering at the same temperature is realized by X-ray diffraction and transmission electron microscopy. © The Minerals, Metals & Materials Society and ASM International 201

    Liquid-phase sintering of medical-grade P558 stainless steel using a new biocompatible eutectic additive

    Get PDF
    Cataloged from PDF version of article.One of the effective approaches to reduce residual pores in powder metallurgy parts is activated liquidphase sintering process using proper additives. In this work, for the first time, a new biocompatible additive (Mn–11.5 wt.% Si, a eutectic alloy) is experimented for liquid-phase sintering of nanocrystalline/amorphous P558 stainless steel powders. It is realized that by increasing the sintering aid content and temperature, the density is effectively increased: a sharp densification progress when the sintering temperature increases from 1000 °C to 1050 °C and a slower densification rate when it exceeds 1050 °C. This preliminary study opens up the development of high-density medical-grade stainless steels produced by powder metallurgy, where suitable additives can lower sintering temperature and time, which is promising for retarding grain growth and commercial applications. © 2012 Elsevier B.V. All rights reserve

    Compositional homogeneity in a medical-grade stainless steel sintered with a Mn-Si additive

    Get PDF
    Cataloged from PDF version of article.In this paper, chemical composition uniformity in amorphous/nanocrystallization medical-grade stainless steel (ASTM ID: F2581) sintered with a Mn–Si additive was studied via scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The results show that as a result of sintering at 1000 °C, no dissociation of Mn–Si additive particles embedded in the stainless steel matrix occurs. In contrast, sintering at 1050 °C develops a relatively homogeneous microstructure from the chemical composition viewpoint. The aforementioned phenomena are explained by liquation of the Mn–Si eutectic additive, thereby wetting of the main powder particles, penetrating into the particle contacts and pore zones via capillary forces, and providing a path of high diffusivity. © 2012 Elsevier B.V. All rights reserved

    Microstructural characterization of medical-grade stainless steel powders prepared by mechanical alloying and subsequent annealing

    Get PDF
    Cataloged from PDF version of article.The harmful effect of nickel ions released from conventional stainless steel implants has provided a high level of motivation for the further development of nickel-free stainless steels. In this paper, the microstructure of medical-grade nickel-free stainless steel powders, with the chemical composition of ASTM F2581, is studied during mechanical alloying and subsequent annealing. Rietveld X-ray diffraction and transmission electron microscopy evaluations reflect nanocrystallization, austenitization and amorphization of the powders due to mechanical activation. It is also realized that annealing of the as-milled powder can develop a single austenitic structure with nanometric crystallite sizes, implying a considerable inherent resistance to grain growth. This study demonstrates the merit of mechanical alloying and subsequent annealing in the development of nanostructured medical-grade stainless steels. (C) 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserve

    Microstructural characterization of medical-grade stainless steel powders prepared by mechanical alloying and subsequent annealing

    Get PDF
    The harmful effect of nickel ions released from conventional stainless steel implants has provided a high level of motivation for the further development of nickel-free stainless steels. In this paper, the microstructure of medical-grade nickel-free stainless steel powders, with the chemical composition of ASTM F2581, is studied during mechanical alloying and subsequent annealing. Rietveld X-ray diffraction and transmission electron microscopy evaluations reflect nanocrystallization, austenitization and amorphization of the powders due to mechanical activation. It is also realized that annealing of the as-milled powder can develop a single austenitic structure with nanometric crystallite sizes, implying a considerable inherent resistance to grain growth. This study demonstrates the merit of mechanical alloying and subsequent annealing in the development of nanostructured medical-grade stainless steels. © 2013 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved

    Comparative Assessment of Copper, Iron, and Zinc Contents in Selected Indian (Assam) and South African (Thohoyandou) Tea (Camellia sinensis L.) Samples and Their Infusion: A Quest for Health Risks to Consumer

    Get PDF
    The current study aims to assess the infusion pattern of three important micronutrients namely copper (Cu), iron (Fe), and zinc (Zn) contents from black tea samples produced in Assam (India) and Thohoyandou (South Africa). Average daily intakes and hazardous quotient were reported for these micronutrients. Total content for Cu, Fe, and Zn varied from 2.25 to 48.82 mg kg−1, 14.75 to 148.18 mg kg−1, and 28.48 to 106.68 mg kg−1, respectively. The average contents of each of the three micronutrients were higher in tea leaves samples collected from South Africa than those from India while the contents in tea infusions in Indian samples were higher than in South African tea samples. Results of this study revealed that the consumption of 600 mL tea infusion produced from 24 g of made tea per day may be beneficial to human in terms of these micronutrients content. Application of nonparametric tests revealed that most of the data sets do not satisfy the normality assumptions. Hence, the use of both parametric and nonparametric statistical analysis that subsequently revealed significant differences in elemental contents among Indian and South African tea

    The influence of solid state information and descriptor selection on statistical models of temperature dependent aqueous solubility.

    Get PDF
    Predicting the equilibrium solubility of organic, crystalline materials at all relevant temperatures is crucial to the digital design of manufacturing unit operations in the chemical industries. The work reported in our current publication builds upon the limited number of recently published quantitative structure-property relationship studies which modelled the temperature dependence of aqueous solubility. One set of models was built to directly predict temperature dependent solubility, including for materials with no solubility data at any temperature. We propose that a modified cross-validation protocol is required to evaluate these models. Another set of models was built to predict the related enthalpy of solution term, which can be used to estimate solubility at one temperature based upon solubility data for the same material at another temperature. We investigated whether various kinds of solid state descriptors improved the models obtained with a variety of molecular descriptor combinations: lattice energies or 3D descriptors calculated from crystal structures or melting point data. We found that none of these greatly improved the best direct predictions of temperature dependent solubility or the related enthalpy of solution endpoint. This finding is surprising because the importance of the solid state contribution to both endpoints is clear. We suggest our findings may, in part, reflect limitations in the descriptors calculated from crystal structures and, more generally, the limited availability of polymorph specific data. We present curated temperature dependent solubility and enthalpy of solution datasets, integrated with molecular and crystal structures, for future investigations
    corecore