7,014 research outputs found
Distribution of the very first PopIII stars and their relation to bright z~6 quasars
We discuss the link between dark matter halos hosting the first PopIII stars
and the rare, massive, halos that are generally considered to host bright
quasars at high redshift z~6. The main question that we intend to answer is
whether the super-massive black holes powering these QSOs grew out from the
seeds planted by the first intermediate massive black holes created in the
universe. This question involves a dynamical range of 10^13 in mass and we
address it by combining N-body simulations of structure formation to identify
the most massive halos at z~6 with a Monte Carlo method based on linear theory
to obtain the location and formation times of the first light halos within the
whole simulation box. We show that the descendants of the first ~10^6 Msun
virialized halos do not, on average, end up in the most massive halos at z~6,
but rather live in a large variety of environments. The oldest PopIII
progenitors of the most massive halos at z~6, form instead from density peaks
that are on average one and a half standard deviations more common than the
first PopIII star formed in the volume occupied by one bright high-z QSO. The
intermediate mass black hole seeds planted by the very first PopIII stars at
z>40 can easily grow to masses m_BH>10^9.5 Msun by z=6 assuming Eddington
accretion with radiative efficiency \epsilon~0.1. Quenching of the black hole
accretion is therefore crucial to avoid an overabundance of supermassive black
holes at lower redshift. This can be obtained if the mass accretion is limited
to a fraction \eta~6*10^{-3} of the total baryon mass of the halo hosting the
black hole. The resulting high end slope of the black hole mass function at z=6
is \alpha ~ -3.7, a value within the 1\sigma error bar for the bright end slope
of the observed quasar luminosity function at z=6.Comment: 30 pages, 9 figures, ApJ accepte
A lower bound in Nehari's theorem on the polydisc
By theorems of Ferguson and Lacey (d=2) and Lacey and Terwilleger (d>2),
Nehari's theorem is known to hold on the polydisc D^d for d>1, i.e., if H_\psi
is a bounded Hankel form on H^2(D^d) with analytic symbol \psi, then there is a
function \phi in L^\infty(\T^d) such that \psi is the Riesz projection of \phi.
A method proposed in Helson's last paper is used to show that the constant C_d
in the estimate \|\phi\|_\infty\le C_d \|H_\psi\| grows at least exponentially
with d; it follows that there is no analogue of Nehari's theorem on the
infinite-dimensional polydisc
Initial temperature and EoS of quark matter from direct photons
The time evolution of the quark gluon plasma created in gold-gold collisions
of the Relativistic Heavy Ion Collider (RHIC) can be described by
hydrodynamical models. Distribution of hadrons reflects the freeze-out state of
the matter. To investigate the time evolution one needs to analyze penetrating
probes, such as direct photon spectra. Distributions of low energy photons was
published in 2010 by PHENIX. In this paper we analyze a 3+1 dimensional
solution of relativistic hydrodynamics and calculate momentum distribution of
direct photons. Using earlier fits of this model to hadronic spectra, we
compare photon calculations to measurements and find that the initial
temperature of the center of the fireball is at least 519+-12 MeV, while for
the equation of state we get c_s= 0.36+-0.02.Comment: Talk at the VI Workshop on Particle Correlations and Femtoscopy,
Kiev, September 14-18, 2010. 6 pages, 1 figure. This work was supported by
the OTKA grant NK73143 and M. Csanad's Bolyai scholarshi
Constraints on the Baryonic Compression and Implications for the Fraction of Dark Halo Lenses
We predict the fraction of dark halo lenses, that is, the fraction of lens
systems produced by the gravitational potential of dark halos, on the basis of
a simple parametric model of baryonic compression. The fraction of dark halo
lenses primarily contains information on the effect of baryonic compression and
the density profile of dark halos, and is expected to be insensitive to
cosmological parameters and source population. The model we adopt comprises the
galaxy formation probability p_g(M) which describes the global efficiency of
baryonic compression and the ratio of circular velocities of galaxies to virial
velocities of dark halos gamma_v=v_c/v_{vir} which means how the inner
structure of dark halos is modified due to baryonic compression. The model
parameters are constrained from the velocity function of galaxies and the
distribution of image separations in gravitational lensing, although the
degeneracy between model parameters still remains. We show that the fraction of
dark halo lenses depends strongly on gamma_v and the density profile of dark
halos such as inner slope alpha. This means that the observation of the
fraction of dark halos can break the degeneracy between model parameters if the
density profile of dark halo lenses is fully settled. On the other hand, by
restricting gamma_v to physically plausible range we can predict the lower
limit of the fraction of dark halo lenses on the basis of our model. Our result
indicates that steeper inner cusps of dark halos (alpha >~ 1.5) or too
centrally concentrated dark halos are inconsistent with the lack of dark halo
lenses in observations.Comment: 10 pages, 9 figures, emulateapj5, accepted for publication in Ap
Extending the halo mass resolution of -body simulations
We present a scheme to extend the halo mass resolution of N-body simulations
of the hierarchical clustering of dark matter. The method uses the density
field of the simulation to predict the number of sub-resolution dark matter
haloes expected in different regions. The technique requires as input the
abundance of haloes of a given mass and their average clustering, as expressed
through the linear and higher order bias factors. These quantities can be
computed analytically or, more accurately, derived from a higher resolution
simulation as done here. Our method can recover the abundance and clustering in
real- and redshift-space of haloes with mass below at to better than 10%. We demonstrate the
technique by applying it to an ensemble of 50 low resolution, large-volume
-body simulations to compute the correlation function and covariance matrix
of luminous red galaxies (LRGs). The limited resolution of the original
simulations results in them resolving just two thirds of the LRG population. We
extend the resolution of the simulations by a factor of 30 in halo mass in
order to recover all LRGs. With existing simulations it is possible to generate
a halo catalogue equivalent to that which would be obtained from a -body
simulation using more than 20 trillion particles; a direct simulation of this
size is likely to remain unachievable for many years. Using our method it is
now feasible to build the large numbers of high-resolution large volume mock
galaxy catalogues required to compute the covariance matrices necessary to
analyse upcoming galaxy surveys designed to probe dark energy.Comment: 11 pages, 7 Figure
The mass function
We present the mass functions for different mass estimators for a range of
cosmological models. We pay particular attention to how universal the mass
function is, and how it depends on the cosmology, halo identification and mass
estimator chosen. We investigate quantitatively how well we can relate observed
masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ
Dark-Halo Cusp: Asymptotic Convergence
We propose a model for how the buildup of dark halos by merging satellites
produces a characteristic inner cusp, of a density profile \rho \prop r^-a with
a -> a_as > 1, as seen in cosmological N-body simulations of hierarchical
clustering scenarios. Dekel, Devor & Hetzroni (2003) argue that a flat core of
a<1 exerts tidal compression which prevents local deposit of satellite
material; the satellite sinks intact into the halo center thus causing a rapid
steepening to a>1. Using merger N-body simulations, we learn that this cusp is
stable under a sequence of mergers, and derive a practical tidal mass-transfer
recipe in regions where the local slope of the halo profile is a>1. According
to this recipe, the ratio of mean densities of halo and initial satellite
within the tidal radius equals a given function psi(a), which is significantly
smaller than unity (compared to being 1 according to crude resonance criteria)
and is a decreasing function of a. This decrease makes the tidal mass transfer
relatively more efficient at larger a, which means steepening when a is small
and flattening when a is large, thus causing converges to a stable solution.
Given this mass-transfer recipe, linear perturbation analysis, supported by toy
simulations, shows that a sequence of cosmological mergers with homologous
satellites slowly leads to a fixed-point cusp with an asymptotic slope a_as>1.
The slope depends only weakly on the fluctuation power spectrum, in agreement
with cosmological simulations. During a long interim period the profile has an
NFW-like shape, with a cusp of 1<a<a_as. Thus, a cusp is enforced if enough
compact satellite remnants make it intact into the inner halo. In order to
maintain a flat core, satellites must be disrupted outside the core, possibly
as a result of a modest puffing up due to baryonic feedback.Comment: 37 pages, Latex, aastex.cls, revised, ApJ, 588, in pres
Cosmological Implications of the Fundamental Relations of X-ray Clusters
Based on the two-parameter family nature of X-ray clusters of galaxies
obtained in a separate paper, we discuss the formation history of clusters and
cosmological parameters of the universe. Utilizing the spherical collapse model
of cluster formation, and assuming that the cluster X-ray core radius is
proportional to the virial radius at the time of the cluster collapse, the
observed relations among the density, radius, and temperature of clusters imply
that cluster formation occurs in a wide range of redshift. The observed
relations favor the low-density universe. Moreover, we find that the model of
is preferable.Comment: 7 pages, 4 figures. To be published in ApJ Letter
Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions
We perform viscous hydrodynamic calculations in 2+1 dimensions to investigate
the influence of bulk viscosity on the viscous suppression of elliptic flow in
non-central heavy-ion collisions at RHIC energies. Bulk and shear viscous
effects on the evolution of radial and elliptic flow are studied with different
model assumptions for the transport coefficients. We find that the temperature
dependence of the relaxation time for the bulk viscous pressure, especially its
critical slowing down near the quark-hadron phase transition at T_c, partially
offsets effects from the strong growth of the bulk viscosity itself near T_c,
and that even small values of the specific shear viscosity eta/s of the
fireball matter can be extracted without large uncertainties from poorly
controlled bulk viscous effects.Comment: 13 pages, 7 figures, 1 table. Submitted to Physical Review C. v2:
corrected typos in several entries in Table
Resolving the Formation of Protogalaxies. I. Virialization
(Abridged) Galaxies form in hierarchically assembling dark matter halos. With
cosmological three dimensional adaptive mesh refinement simulations, we explore
in detail the virialization of baryons in the concordance cosmology, including
optically thin primordial gas cooling. We focus on early protogalaxies with
virial temperatures of 10^4 K and their progenitors. Without cooling, virial
heating occurs in shocks close to the virial radius for material falling in
from voids. Material in dense filaments penetrates deeper to about half that
radius. With cooling the virial shock position shrinks and also the filaments
reach scales as small as a third the virial radius. The temperatures in
protogalaxies found in adiabatic simulations decrease by a factor of two from
the center and show flat entropy cores. In cooling halos the gas reaches virial
equilibrium with the dark matter potential through its turbulent velocities. We
observe turbulent Mach numbers ranging from one to three in the cooling cases.
This turbulence is driven by the large scale merging and interestingly remains
supersonic in the centers of these early galaxies even in the absence of any
feedback processes. The virial theorem is shown to approximately hold over 3
orders of magnitude in length scale with the turbulent pressure prevailing over
the thermal energy. The turbulent velocity distributions are Maxwellian and by
far dominate the small rotation velocities associated with the total angular
momentum of the galaxies. Decomposing the velocity field using the
Cauchy-Stokes theorem, we show that ample amounts of vorticity are present
around shocks even at the very centers of these objects.Comment: 13 pages, 6 figures. Submitted to ApJ on 8 March 2007. Revised
manuscript. Comments welcom
- …