We discuss the link between dark matter halos hosting the first PopIII stars
and the rare, massive, halos that are generally considered to host bright
quasars at high redshift z~6. The main question that we intend to answer is
whether the super-massive black holes powering these QSOs grew out from the
seeds planted by the first intermediate massive black holes created in the
universe. This question involves a dynamical range of 10^13 in mass and we
address it by combining N-body simulations of structure formation to identify
the most massive halos at z~6 with a Monte Carlo method based on linear theory
to obtain the location and formation times of the first light halos within the
whole simulation box. We show that the descendants of the first ~10^6 Msun
virialized halos do not, on average, end up in the most massive halos at z~6,
but rather live in a large variety of environments. The oldest PopIII
progenitors of the most massive halos at z~6, form instead from density peaks
that are on average one and a half standard deviations more common than the
first PopIII star formed in the volume occupied by one bright high-z QSO. The
intermediate mass black hole seeds planted by the very first PopIII stars at
z>40 can easily grow to masses m_BH>10^9.5 Msun by z=6 assuming Eddington
accretion with radiative efficiency \epsilon~0.1. Quenching of the black hole
accretion is therefore crucial to avoid an overabundance of supermassive black
holes at lower redshift. This can be obtained if the mass accretion is limited
to a fraction \eta~6*10^{-3} of the total baryon mass of the halo hosting the
black hole. The resulting high end slope of the black hole mass function at z=6
is \alpha ~ -3.7, a value within the 1\sigma error bar for the bright end slope
of the observed quasar luminosity function at z=6.Comment: 30 pages, 9 figures, ApJ accepte