2,372 research outputs found

    Regulation and competition in the Turkish telecommunications industry: an update

    Get PDF
    This chapter provides an overview of the state of liberalization, competition and regulation of major segments of the telecommunications industry in Turkey. It shows that the competitive stance of the regulatory authority and the development of actual competition has been uneven across segments. Specifically, the degree of competition has been higher in the mobile segment relative to fixed telephony or broadband. The chapter also discusses the new Electronic Communications Law and argues that although not perfect, it provides a coherent basis on which the regulatory authority can pursue competitive objectives in a more even manner. However, the actual development of competition will depend a lot on how the law and the ensuing secondary legislation are actually implemented

    The marine mineral resources of the UK Continental Shelf : final report

    Get PDF
    In 2011, The Crown Estate commissioned the British Geological Survey (BGS) to begin a two year research project to undertake a Mineral Resource Assessment of the UK Continental Shelf with the results being depicted as a series of maps, accompanying reports and associated GIS data. This report details the process behind the compilation of these maps. It outlines the data sources used in the project, the methodology used to compile the data, the confidence in the data and any caveats associated with the data and its use. This report focuses on the national model for sand and gravel, where relevant information on the data for other minerals is included for completeness. Knowledge of mineral resources is essential for effective and sustainable planning decisions. The marine mineral resource maps provide a comprehensive, relevant and accessible information base. This information will allow all stakeholders (planners, industry and members of the public) to visualise the distribution of offshore minerals to a common standard and at a common scale, an important requirement of an integrated marine planning system. The maps will also facilitate the conservation (safeguarding) of non-renewable mineral resources for future generations in accordance with the principles of sustainable development

    Call Me Caitlyn: Making and making over the 'authentic' transgender body in Anglo-American popular culture

    Get PDF
    A conception of transgender identity as an ‘authentic’ gendered core ‘trapped’ within a mismatched corporeality, and made tangible through corporeal transformations, has attained unprecedented legibility in contemporary Anglo-American media. Whilst pop-cultural articulations of this discourse have received some scholarly attention, the question of why this 'wrong body' paradigm has solidified as the normative explanation for gender transition within the popular media remains underexplored. This paper argues that this discourse has attained cultural pre-eminence through its convergence with a broader media and commercial zeitgeist, in which corporeal alteration and maintenance are perceived as means of accessing one’s ‘authentic’ self. I analyse the media representations of two transgender celebrities: Caitlyn Jenner and Nadia Almada, alongside the reality TV show TRANSform Me, exploring how these women’s gender transitions have been discursively aligned with a cultural imperative for all women, cisgender or trans, to display their authentic femininity through bodily work. This demonstrates how established tropes of authenticity-via-bodily transformation, have enabled transgender to become culturally legible through the wrong body trope. Problematically, I argue, this process has worked to demarcate ideals of ‘acceptable’ transgender subjectivity: self-sufficient, normatively feminine, and eager to embrace the possibilities for happiness and social integration provided by the commercial domain

    An approximate method for solving rarefied and transitional flows using TDEFM with isotropic mesh adaptation

    Get PDF
    DSMC [1] can become increasingly expensive when extended to the near-continuum regime. Because of the statistical nature of the results, long run times are required to build up samples of simulator particles large enough to reduce the statistical scatter to acceptable levels. Here we adapt a kinetic theory based flux method to produce a quick approximate solver for transition and near-continuum flows. The results have no statistical scatter. The CPU times are similar to those of traditional continuum (Navier-Stokes or Euler) solvers. The True Direction Equilibrium Flux Method (TDEFM) [2, 3] is a generalisation of Pullin's kinetic theory based EFM [4]. TDEFM can transfer fluxes of mass, momentum and energy in physically realistic directions from any source cell to any destination cell, even if the cells do not share an interface. TDEFM, as an Euler solver, has been shown to provide good results on a Cartesian grid for flows where standard continuum methods produce unphysical asymmetries apparently because the continuum fluxes are constrained (in one time step) to flow in the grid coordinate directions rather than the correct physical direction. [2, 3] The new method for rarefied flow does not try to produce the correct velocity distribution function, but does ensure that mass, momentum and energy are transported within the flow over the physically correct distances between “pseudo-collisions.” To ensure this, (1) the time step is restricted so that mass, momentum and energy are exchanged between contiguous cells only in one time step, and (2) the cells sizes are adapted, as steady state is approached, to be approximately equal to the local mean free path. The results for Mach 5 flow over a flat plate for varying Knudsen numbers show an average difference (compared to DSMC) in the X-velocity profile near the surface of the plate of less than 6 percent. TDEFM, employing adaptive mesh refinement, required less than 9 percent of the computational time required by DSMC for the same flow. Thus the approximate method could be useful for quick “first-estimate” solutions of otherwise time consuming design problems. ©2009 American Institute of Physic

    A model for orientation effects in electron‐transfer reactions

    Get PDF
    A method for solving the single‐particle Schrödinger equation with an oblate spheroidal potential of finite depth is presented. The wave functions are then used to calculate the matrix element T_BA which appears in theories of nonadiabatic electron transfer. The results illustrate the effects of mutual orientation and separation of the two centers on TBA. Trends in these results are discussed in terms of geometrical and nodal structure effects. Analytical expressions related to T_BA for states of spherical wells are presented and used to analyze the nodal structure effects for T_BA for the spheroidal wells

    The Mersey Estuary : sediment geochemistry

    Get PDF
    This report describes a study of the geochemistry of the Mersey estuary carried out between April 2000 and December 2002. The study was the first in a new programme of surveys of the geochemistry of major British estuaries aimed at enhancing our knowledge and understanding of the distribution of contaminants in estuarine sediments. The report first summarises the physical setting, historical development, geology, hydrography and bathymetry of the Mersey estuary and its catchment. Details of the sampling and analytical programmes are then given followed by a discussion of the sedimentology and geochemistry. The chemistry of the water column and suspended particulate matter have not been studied, the chief concern being with the geochemistry of the surface and near-surface sediments of the Mersey estuary and an examination of their likely sources and present state of contamination

    New insights in pediatrics in 2021: choices in allergy and immunology, critical care, endocrinology, gastroenterology, genetics, haematology, infectious diseases, neonatology, neurology, nutrition, palliative care, respiratory tract illnesses and telemedicine

    Get PDF
    In this review, we report the developments across pediatric subspecialties that have been published in the Italian Journal of Pediatrics in 2021. We highlight advances in allergy and immunology, critical care, endocrinology, gastroenterology, genetics, hematology, infectious diseases, neonatology, neurology, nutrition, palliative care, respiratory tract illnesses and telemedicine

    Modelling Unsteady Processes with the Direct Simulation Monte Carlo Technique

    Get PDF
    Over the past 40 years, the Direct Simulation Monte Carlo (DSMC) technique has been developed into a flexible and effective solver for flow problems in the rarefied to near continuum regime. However, even with modern parallelised code, the efficient computation of unsteady near-continuum flows, which are important in processes such as Pulsed Pressure Chemical Vapour Deposition (PP-CVD), remains a challenge. We have developed an unsteady parallel DSMC code (PDSC) utilising advanced features such as transient adaptive sub-cells to ensure nearest neighbour collisions and a temporal-variable time step to reduce computation time. This technique is combined with a unique post-processor called the DMSC Rapid Ensemble Averaging Method (DREAM) which reduces the statistical scatter in the data sets produced by PDSC. The combined method results in a significant memory and computational reduction over ensemble averaging DSMC, while maintaining low statistical scatter in the results. The unsteady code has been validated by simulation of shock-tube flow and unsteady Couette flow, and a number of test cases have been demonstrated including shock impingement on wedges. The technique is currently being used to model the development of an underexpanded jet in a PP-CVD reactor
    • 

    corecore