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Abstract. DSMC [1] can become increasingly expensive when extendetieémear-continuum regime. Because of the
statistical nature of the results, long run times are regiio build up samples of simulator particles large enougledoce

the statistical scatter to acceptable levels. Here we a&jptetic theory based flux method to produce a quick appratém
solver for transition and near-continuum flows. The reshitge no statistical scatter. The CPU times are similar tsgho
of traditional continuum (Navier-Stokes or Euler) solverle True Direction Equilibrium Flux Method (TDEFM) [2, 3 i

a generalisation of Pullin’s kinetic theory based EFM [4DHFM can transfer fluxes of mass, momentum and energy in
physically realistic directions from any source cell to @®gtination cell, even if the cells do not share an interfaBdEFM,

as an Euler solver, has been shown to provide good resultCamtasian grid for flows where standard continuum methods
produce unphysical asymmetries apparently because thimeom fluxes are constrained (in one time step) to flow in the
grid coordinate directions rather than the correct physloaction. [2, 3] The new method for rarefied flow does nottoy
produce the correct velocity distribution function, buedensure that mass, momentum and energy are transported wit
the flow over the physically correct distances between "geaollisions”. To ensure this, (1) the time step is restdcso
that mass, momentum and energy are exchanged betweenuougigells only in one time step, and (2) the cells sizes are
adapted, as steady state is approached, to be approxinegigy to the local mean free path. The results for Mach 5 flow
over a flat plate for varying Knudsen numbers show an averidfgeathce (compared to DSMC) in the X-velocity profile near
the surface of the plate of less than 6 percent. TDEFM, empdogdaptive mesh refinement, required less than 9 percent
of the computational time required by DSMC for the same flohug the approximate method could be useful for quick
"first-estimate" solutions of otherwise time consumingigiegroblems.
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INTRODUCTION

Bird’s Direct Simulation Monte-Carlo method [1] simulatesarefied flow by following the motion and collisions of a
large number of simulator particles as they move througffithe DSMC in the high collision rate limit has been used
as an Euler solver [4, 5, 6] and as the ‘continuum’ part of arldyp SMC/continuum solver. DSMC is generally more
robust than a conventional Euler solver but suffers froristieal scatter which requires large amounts of CPU power
to reduce to acceptable limits. One reason for DSMC's stalidl that the fluxes of mass, momentum and energy are
carried by particles which move in the physically correcediions; in any time step fluxes may flow from any cell to
any other cell in the computational domain.

An important requirement of an accurate direct simulat®that particles are only permitted to move in free flight
over realistic distances. Therefore, a accurate DSMC sitioul manipulates the time step and cell size such that
particles have collisions after moving a distance equitite the local mean free path. The cell sixedictates the
size of the region from which properties are sampled. Thespgsties control the calculated collision rate, and thus
affect all particles within that region. Where the chardsti length of these gradients approagctthe cell size must
also. In regions where the flow gradients are small or zermh surestriction is not required. Alexander [7, 8] shows
that the effective viscosity and heat transfer presentwaretions of the cell size.

Presented is the True Direction Equilibrium Flux Method @EM) employed using an Adaptive Refined Mesh
(AMR). TDEFM aims to maintain the analytical foundation of® while employing the physical mechanism of
transport employed by a direct solver such as DSMC. The floxesass, momentum and energy are determined
by integration of the local Maxwell-Boltzmann distributimver both velocity space and the physical volume of
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FIGURE 1. Particle moving from x (betweer andxg) to a region betweer; andx;. For the derivations used heng, >
X & XR = X

each cell. This novel approach allows fluxes to be transgdrtem any specified source volume to any specified
destination volume. Unlike EFM, flux exchange between dsli®t limited to those sharing adjacent interfaces. The
fluxes obtained using TDEFM represent the analytical smiuto the free flight phase of a direct simulation in the
limit of an infinite number of simulation particles for anyn& step when conditions in each cell are uniform and in
thermal equilibrium. By employing AMR to ensure the cellesiz approximately equal to the local mean free path,
the numerical dissipation inherent in TDEFM is approxinhagzjual to the physically realistic dissipation. While no
effort is made to correctly capture the non-equilibriuntritisitions present in rarefied and transitional flows, mgvin
the molecules in free flight over physically realistic distas and directions is shown to provide results approximate
equal to those obtained using full DSMC for a fraction of toenputational expense.

TDEFM

Derived below are the expressions for the mass, momenturareargy carried by molecules in free-molecular flight
for time At, starting from a rectangular region (in 2D) to any otheraagular region. For simplicity all forces acting
on particles are assumed to be zerm,no particle interactions occur while particles are movimgernal structural
energy (such as energy due to rotation and vibration) isided in the energy flux expressions so monatomic, diatomic
or polyatomic gases can be simulated.

Uniform conditions are assumed within the cell from which tholecules originatd.é. there are no gradients of
density, mean velocity or temperature within the cell) alhthe molecules within the cell have velocities conforming
to the same Maxwell-Boltzmann distribution. The distribatfunction in one dimension has the Maxwell-Boltzmann

form
1 —(v—m)?
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where
m:/ vg(v)dvands:(RT)’l/z.

In other words, the fraction of molecules having a veloeityin the rangevy — vx + dv is g(vx) dw and similar
expressions hold for, andv,. The velocity required by a particle at locatioto travel in free molecular flight and fall
into the region bounded by andx; (shown in Figure 1) is betweéih[’—x and**. Therefore, the chance of a particle
at positionx moving to between; — x; is:
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The average probability of a particle having the requirddaity range over the spacg — xg represents the fraction
of particles from the region betweean andxg possessing the velocities specified and is given by:
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This equation can be used to find the fraction of mass fronoregi < xg that flows into the region between« x;.
The constant®;. andM; — M4 are easily determined [2]. The momentum and energy tra(iséeunit source mass)

is found by taking moments of
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whereC is a molecules inter

freedom. The value o, together with the constanis, P, —

the equilibrium distributiem€tion and are [2]:
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nal structural energy and includes aeygy held in unused translational degrees of
P4 E; andE; — E4 can be foundin [2].

2D ADAPTIVE MESH REFINEMENT

Due to the employment of adaptive mesh refinement knowledgeighbouring cell size and location cannot be
incorporated easily into the flux expressions themselvdslaM set of situation specific flux expressions could be
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FIGURE 2. Sample source and destination cell geometry in 2D. The sagitis bounded by the coordinates, yi ) — (Xr,YR)-
The destination cell is bounded by the coordindtesy;) — (X, Vr).

created and employed for different possible source cellstigion cell combinations, it is far easier (although
computationally expensive) to simply calculate the fullHEM flux. Referring to Figure 2, the net flux of mass,
momentum and energy to move from the source region to thandéeh region is:

M = MOfM(U7 Vv RT,A'[,XR,XL,X“X() X fM (Va v RTvAt7yRayL7y|ayr)
PX = MOfP(U7 1% RT,At,XR,XL,X|,Xr) X fM V7 v RT,AtaYRaYLaYIaYr)

(
Py - MOfM(U7 v RT,At,XR,XL,X|,Xr) X fP(V7 % RTaAtayRayLayhyr)
EX - MOfE(Ua 4 RT,At,XR,XL,X|,Xr) X fM (V7 \% RTaAtaYRaYLaYth)
Ey - MOfM(U7 Vv RT,At,XR,XL,X|,Xr) X fE(V7 \% RTaAtaYRaYLaYth)

whereM, P andE are the net mass, momentum and energy fluxes respectilghg, the initial mass in the source
region, and([x.,YL], [Xr,Yr]) give the size and location of the rectangular source redigny;], %, Yr]) describe the
size and location of the destination regithijs the X velocity,V is the Y velocity,M is the net mass fluwEy andPR,
are the X and Y momentum fluxes akdis the energy flux. These fluxes of mass, momentum and enguggsent
the analytical fluxes where molecules belonging to a gasamithl equilibrium are moved in free molecular flight.
The destination region can be located anywhere in spacesarat required to be adjacent to the source region.

The proposed implementation is applied to the calculatfsteady flows and is seperated into 3 phases. First, the
steady flow is calculated on a relatively coarse mesh. Whedizare larger than the 1.5 times the local mean free path,
they are flagged for division. Each cell can only be dividedeoper time step. The solution is advanced in time to
allow the flow to adjust to the new computational grid betwe®sh adaptations. Finally, any cells which are smaller
than half the local mean free path are flagged for combinattidewise, a set of cells can only be combined once per
timestep. The cell division routine for a célis outlined below:

1. Create 3 new cells with indexes Nf+ 1,N + 2 andN + 3, whereN was the previous number of existing cells
(including ghost cells).

2. Evenly distribute the mass, momentum and energy amoulsgkedl + 1, N + 2 andN + 3.

3. Calculate the state in the newly created cells and regenre local neighbour list. A complete reconstruction
of the neighbour list is not required - just a reconstructibthe cells which were previously neighbours of cell
k.

4. Search through all neighbours of ckllif the neighbour is a ghost cell and adjacent to &elt should also be
split.

5. Update the total number of cells.

By employing strict rules for the creation of new cells, theqess of cell combination is simplified. When cells are

flagged for combination, the mass, momentum and energy im&ahand assigned to the memory allocated forlcell
The previous cells are deleted and the entire list of celid (aeir neighbours) are adjusted.
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FIGURE 3. Computational domain used for simulation of hypersonic famer a flat plate. The physical geometry is fixed in
both TDEFM and DSMC computations. The knudsen number igdahirough manipulation of the gas viscosity alone.
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FIGURE 4. X-velocity profiles from TDEFM for simulation of hypersorfiow over a flat plate. Each line represents the variation
in x-velocity atx/L = 0.2,0.4,0.6 and 08. The Knudsen numbers for each casekane= 0.01 (Left) andKn = 0.005 (Right). The
gas is monatomic with a power law based viscosity. AdaptivesiMRefinement (AMR) is employed to ensure the cell size is
approximately equal to the local mean free path.

RESULTS

Results from a hypersonic flow over a flat plate are shown. Tf@@yed computational domain is shown in Figure 3.
The simulated gas is an ideal, monatomic hypothetical gdsavypower law viscosityc = 0.81). The mach number
of the freestream gas M., = 5. The temperature of the plate is fixed at the freestreameeatyre. The top and right
hand side boundaries are extrapolated outflow. The left satedboundary is inflow while the lower surface located
infront of the diffusely reflective surface is specularl§leetive. The Knudsen number of the flow is varied to test the
general capability of the adaptive grid TDEFM techniqueisi®done through manipulation of the gas viscosity - the
physical geometry is fixed in its dimensions.

The results from TDEFM are compared to results taken from IlOSolution. The number of simulation particles
employed varied with the simulated Knuden number. Due soptbven performance, Wu's parallel DSMC solver
PDSC [9] with a variable hard sphere molecular model was.Usach simulation was run parallel over a 12 processor
cluster. Each DSMC solution employed adaptive time stepppma regular cartesian grid with adaptive sub-cells. The
diffusely reflecting surface is completely accomodating.

To compare the results obtained by DSMC and TDEFM, x-vejaaitd density profiles at regular locations along
the plate are examined. Figure 4 shows the x-velocity as etitmof distance from the plate surface at locations
x/L = 0.06,0.33,0.66 and 086 for varying Knudsen numbers. The gradient of velocityhatplate surface calculated
by TDEFM closely matchese that obtained by the DSMC restiltsre is generally very good agreement between the
TDEFM and DSMC results over the entire flow field.

Figure 5 shows the density as a function of distance from lae gurface at locations'L = 0.06,0.33,0.66 and
0.86 for varying Knudsen numbers. The differences betweed B¥eFM and DSMC results are more obvious - the
thickness of the shock is larger in the TDEFM results tharh@DSMC results. This is likely because of DSMC'’s
ability to maintain information regarding mass distriloutiacross cells. TDEFM forces uniform mass distribution



FIGURE 5. Density profiles from TDEFM for simulation of hypersonic flawer a flat plate. Each line represents the variation
in density atx/L = 0.2,0.4,0.6 and 08. The Knudsen numbers for each casekane= 0.01 (Left) andKn = 0.005 (Right). The
gas is monatomic with a power law based viscosity. AdaptiwsiMRefinement (AMR) is employed to ensure the cell size is
approximately equal to the local mean free path.

across each cell at each time step. Despite the large nurobeedls, the computational expense of using TDEFM
with adaptive mesh refinement is still significantly lessthiging conventional DSMC, requiring less than 4 percent
of the computation time required by PDSMC.

CONCLUSION

The True Direction Equilibrium Flux Method (TDEFM) is preged here with the aim of reproducing the results
obtained by the direct simulation technique DSMC. In TDEHR integrals of the equilibrium distribution function
are evaluated over both velocity space and the entire pdiygi@ce of the cell, rather than just at the boundary. The
fluxes of mass, momentum and energy are carried from anyfiakesburce region into any specified destination
region. These fluxes are not limited to cells sharing adjaicearfaces and can, for a given time step, be exchanged
between any source and destination cell. TDEFM is the aicalyquivalent to EPSM when conditions in each cell are
uniform and an infinite number of simulation particles aregent. By utilising an adaptive mesh where the desired cell
size is based on a fraction of the local mean free path lengimawly derived diffusely reflective flux expressions,
the TDEFM fluxes are shown to approximately reproduce resiitained by DSMC for a viscous flow.
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