94 research outputs found

    The analysis of European lacquer : optimization of thermochemolysis temperature of natural resins

    Get PDF
    In order to optimize chromatographic analysis of European lacquer, thermochemolysis temperature was evaluated for the analysis of natural resins. Five main ingredients of lacquer were studied: sandarac, mastic, colophony, Manila copal and Congo copal. For each, five temperature programs were tested: four fixed temperatures (350, 480, 550, 650 degrees C) and one ultrafast thermal desorption (UFD), in which the temperature rises from 350 to 660 degrees C in 1 min. In total, the integrated signals of 27 molecules, partially characterizing the five resins, were monitored to compare the different methods. A compromise between detection of compounds released at low temperatures and compounds formed at high temperatures was searched. 650 degrees C is too high for both groups, 350 degrees C is best for the first, and 550 degrees C for the second. Fixed temperatures of 480 degrees C or UFD proved to be a consensus in order to detect most marker molecules. UFD was slightly better for the molecules released at low temperatures, while 480 degrees C showed best compounds formed at high temperatures

    Organic residues in archaeology - the highs and lows of recent research

    Get PDF
    YesThe analysis of organic residues from archaeological materials has become increasingly important to our understanding of ancient diet, trade and technology. Residues from diverse contexts have been retrieved and analysed from the remains of food, medicine and cosmetics to hafting material on stone arrowheads, pitch and tar from shipwrecks, and ancient manure from soils. Research has brought many advances in our understanding of archaeological, organic residues over the past two decades. Some have enabled very specific and detailed interpretations of materials preserved in the archaeological record. However there are still areas where we know very little, like the mechanisms at work during the formation and preservation of residues, and areas where each advance produces more questions rather than answers, as in the identification of degraded fats. This chapter will discuss some of the significant achievements in the field over the past decade and the ongoing challenges for research in this area.Full text was made available in the Repository on 15th Oct 2015, at the end of the publisher's embargo period

    Chemical analysis of pottery demonstrates prehistoric origin for high-altitude alpine dairying

    Get PDF
    The European high Alps are internationally renowned for their dairy produce, which are of huge cultural and economic significance to the region. Although the recent history of alpine dairying has been well studied, virtually nothing is known regarding the origins of this practice. This is due to poor preservation of high altitude archaeological sites and the ephemeral nature of transhumance economic practices. Archaeologists have suggested that stone structures that appear around 3,000 years ago are associated with more intense seasonal occupation of the high Alps and perhaps the establishment of new economic strategies. Here, we report on organic residue analysis of small fragments of pottery sherds that are occasionally preserved both at these sites and earlier prehistoric rock-shelters. Based mainly on isotopic criteria, dairy lipids could only be identified on ceramics from the stone structures, which date to the Iron Age (ca. 3,000 - 2,500 BP), providing the earliest evidence of this practice in the high Alps. Dairy production in such a marginal environment implies a high degree of risk even by today’s standards. We postulate that this practice was driven by population increase and climate deterioration that put pressure on lowland agropastoral systems and the establishment of more extensive trade networks, leading to greater demand for highly nutritious and transportable dairy products

    Molecular and isotopic evidence for the processing of starchy plants in Early Neolithic pottery from China

    Get PDF
    Organic residue analysis of ancient ceramic vessels enables the investigation of natural resources that were used in daily cooking practices in different part of the world. Despite many methodological advances, the utilization of plants in pottery has been difficult to demonstrate chemically, hindering the study of their role in ancient society, a topic that is especially important to understanding early agricultural practices at the start of the Neolithic period. Here, we present the first lipid residue study on the Chinese Neolithic pottery dated to 5.0 k - 4.7 k cal BC from the Tianluoshan site, Zhejiang province, a key site with early evidence for rice domestication. Through the identification of novel molecular biomarkers and extensive stable isotope analysis, we suggest that the pottery in Tianluoshan were largely used for processing starchy plant foods. These results not only highlight the significance of starchy plants in Neolithic southern China but also show a clear difference with other contemporary sites in northern Eurasia, where pottery is clearly orientated to aquatic resource exploitation. These differences may be linked with the early development of rice agriculture in China compared to its much later adoption in adjacent northerly regions

    TGMS analysis of archaeological bone from burials of the late Roman period

    No full text
    The use of thermogravimetric analysis-mass spectrometry (TGMS) to study the state of preservation of archaeological bones has been investigated. As part of a collaborative multi-analytical study, bones exhumed from graves of the late Roman period in France and Italy were examined. A decrease in organic matter for the archaeological bones compared to that for new bone was confirmed, demonstrating that diagenesis of aged bones can be detected using TGMS. Different amounts of collagen were determined for bones from different graves and could, for the majority of specimens, be correlated with the visually observed preservation states
    corecore