55 research outputs found

    Femoral Adipose Tissue May Accumulate the Fat That Has Been Recycled as VLDL and Nonesterified Fatty Acids

    Get PDF
    OBJECTIVE: Gluteo-femoral, in contrast to abdominal, fat accumulation appears protective against diabetes and cardiovascular disease. Our objective was to test the hypothesis that this reflects differences in the ability of the two depots to sequester fatty acids, with gluteo-femoral fat acting as a longer-term "sink." RESEARCH DESIGN AND METHODS: A total of 12 healthy volunteers were studied after an overnight fast and after ingestion of a mixed meal. Blood samples were taken from veins draining subcutaneous femoral and abdominal fat and compared with arterialized blood samples. Stable isotope-labeled fatty acids were used to trace specific lipid fractions. In 36 subjects, adipose tissue blood flow in the two depots was monitored with (133)Xe. RESULTS: Blood flow increased in response to the meal in both depots, and these responses were correlated (r(s) = 0.44, P < 0.01). Nonesterified fatty acid (NEFA) release was suppressed after the meal in both depots; it was lower in femoral fat than in abdominal fat (P < 0.01). Plasma triacylglycerol (TG) extraction by femoral fat was also lower than that by abdominal fat (P = 0.05). Isotopic tracers showed that the difference was in chylomicron-TG extraction. VLDL-TG extraction and direct NEFA uptake were similar in the two depots. CONCLUSIONS: Femoral fat shows lower metabolic fluxes than subcutaneous abdominal fat, but differs in its relative preference for extracting fatty acids directly from the plasma NEFA and VLDL-TG pools compared with chylomicron-TG

    Decreased Aerobic Exercise Capacity After Long-Term Remission From Cushing Syndrome: Exploration of Mechanisms.

    Get PDF
    BACKGROUND: Although major improvements are achieved after cure of Cushing syndrome (CS), fatigue and decreased quality of life persist. This is the first study to measure aerobic exercise capacity in patients in remission of CS for more than 4 years in comparison with matched controls, and to investigate whether the reduction in exercise capacity is related to alterations in muscle tissue. METHODS: Seventeen patients were included. A control individual, matched for sex, estrogen status, age, body mass index, smoking, ethnicity, and physical activity level was recruited for each patient. Maximal aerobic capacity (VO2peak) was assessed during incremental bicycle exercise to exhaustion. In 8 individually matched patients and controls, a percutaneous muscle biopsy was obtained and measures were made of cross-sectional areas, capillarization, and oxphos complex IV (COXIV) protein content as an indicator of mitochondrial content. Furthermore, protein content of endothelial nitric oxide synthase (eNOS) and eNOS phosphorylated on serine1177 and of the NAD(P)H-oxidase subunits NOX2, p47phox, and p67phox were measured in the microvascular endothelial layer. FINDINGS: Patients showed a lower mean VO2peak (SD) (28.0 [7.0] vs 34.8 [7.9] ml O2/kg bw/min, P < .01), maximal workload (SD) (176 [49] vs 212 [67] watt, P = .01), and oxygen pulse (SD) (12.0 [3.7] vs 14.8 [4.2] ml/beat, P < .01) at VO2peak. No differences were seen in muscle fiber type-specific cross-sectional area, capillarization measures, mitochondrial content, and protein content of eNOS, eNOS-P-ser1177, NOX2, p47phox, and p67phox. INTERPRETATION: Because differences in muscle fiber and microvascular outcome measures are not statistically significant, we hypothesize that cardiac dysfunction, seen in active CS, persists during remission and limits blood supply to muscles

    Food and the circadian activity of the hypothalamic-pituitary-adrenal axis

    Full text link
    corecore