651 research outputs found

    Residues and dissipation kinetics of two imidacloprid nanoformulations on bean (Phaseolus vulgaris L.) under field conditions

    Get PDF
    The current study investigates the dissipation kinetics of two imidacloprid (IMI) nanoformulations (entitled: Nano-IMI and Nano-IMI/TiO2) on common bean (Phaseolus vulgaris) seeds under field conditions and compares them with 35% Suspension Concentrate (SC) commercial formulation. To do so, it sprays P. vulgaris plants at 30 and 60 g/ha within green bean stage, sampling them during the 14-day period after the treatment. Following extraction and quantification of IMI residues, dissipation data have been fitted to simple-first order kinetic model (SFOK) and to first-order double-exponential decay (FODED) models, with 50% and 90% dissipation times (DT50 and DT90, respectively) assessed along the pre-harvest interval (PHI). With the exception of Nano-IMI at 60 g/ha, other decline curves are best fitted to the FODED model. In general, dissipation is faster for Nano-IMI (at 30 g/ha: DT50 = 1.09 days, DT90 = 4.30 days, PHI = 1.23 days; at 60 g/ha: DT50 = 1.29 days, DT90 = 4.29 days, PHI = 2.95 days) and Nano-IMI/TiO2 (at 30 g/ha: DT50 = 1.15 days, DT90 = 4.40 days, PHI = 1.08 days; at 60 g/ha: DT50 = 0.86 days, DT90 = 4.92 days, PHI = 3.02 days), compared to 35% SC (at 30 g/ha: DT50 = 1.58, DT90 = 6.45, PHI = 1.93; at 60 g/ha: DT50 = 1.58 days, DT90 = 14.50 days, PHI = 5.37 days). These results suggest the suitability of Nano-IMI and Nano-IMI/TiO2 application at both rates in terms of their residues on P. vulgaris seeds

    Spatial modeling of individual-level infectious disease transmission: Tuberculosis data in Manitoba, Canada

    Get PDF
    Geographically dependent individual level models (GD-ILMs) are a class of statistical models that can be used to study the spread of infectious disease through a population in discrete-time in which covariates can be measured both at individual and area levels. The typical ILMs to illustrate spatial data are based on the distance between susceptible and infectious individuals. A key feature of GD-ILMs is that they take into account the spatial location of the individuals in addition to the distance between susceptible and infectious individuals. As a motivation of this article, we consider tuberculosis (TB) data which is an infectious disease which can be transmitted through individuals. It is also known that certain areas/demographics/communities have higher prevalent of TB (see Section 4 for more details). It is also of interest of policy makers to identify those areas with higher infectivity rate of TB for possible preventions. Therefore, we need to analyze this data properly to address those concerns. In this article, the expectation conditional maximization algorithm is proposed for estimating the parameters of GD-ILMs to be able to predict the areas with the highest average infectivity rates of TB. We also evaluate the performance of our proposed approach through some simulations. Our simulation results indicate that the proposed method provides reliable estimates of parameters which confirms accuracy of the infectivity rates

    Water management for sustainable irrigated agriculture in the Zayandeh Rud Basin, Esfahan Province, Iran

    Get PDF
    Irrigation systemsCropping systemsIrrigated farmingRiver basinsTopographyGeomorphologyClimateHydrologyWater qualityGroundwaterSoil salinitySustainable agricultureIranEsfahan ProvinceZayandeh Rud BasinChadegan Reservoir

    Investigating the Security of EV Charging Mobile Applications As an Attack Surface

    Full text link
    The adoption rate of EVs has witnessed a significant increase in recent years driven by multiple factors, chief among which is the increased flexibility and ease of access to charging infrastructure. To improve user experience, increase system flexibility and commercialize the charging process, mobile applications have been incorporated into the EV charging ecosystem. EV charging mobile applications allow consumers to remotely trigger actions on charging stations and use functionalities such as start/stop charging sessions, pay for usage, and locate charging stations, to name a few. In this paper, we study the security posture of the EV charging ecosystem against remote attacks, which exploit the insecurity of the EV charging mobile applications as an attack surface. We leverage a combination of static and dynamic analysis techniques to analyze the security of widely used EV charging mobile applications. Our analysis of 31 widely used mobile applications and their interactions with various components such as the cloud management systems indicate the lack of user/vehicle verification and improper authorization for critical functions, which lead to remote (dis)charging session hijacking and Denial of Service (DoS) attacks against the EV charging station. Indeed, we discuss specific remote attack scenarios and their impact on the EV users. More importantly, our analysis results demonstrate the feasibility of leveraging existing vulnerabilities across various EV charging mobile applications to perform wide-scale coordinated remote charging/discharging attacks against the connected critical infrastructure (e.g., power grid), with significant undesired economical and operational implications. Finally, we propose counter measures to secure the infrastructure and impede adversaries from performing reconnaissance and launching remote attacks using compromised accounts

    Berry effect in acoustical polarization transport in phononic crystals

    Full text link
    We derive the semiclassical equations of motion of a transverse acoustical wave packet propagating in a phononic crystal subject to slowly varying perturbations. The formalism gives rise to Berry effect terms in the equations of motion, manifested as the Rytov polarization rotation law and the polarization-dependent Hall effect. We show that the formalism is also applicable to the case of non-periodic inhomogeneous media, yielding explicit expressions for the Berry effect terms.Comment: To appear in JETP Let

    Two Decades of Global Progress in Authorized Advanced Therapy Medicinal Products: An Emerging Revolution in Therapeutic Strategies

    Get PDF
    The introduction of advanced therapy medicinal products (ATMPs) to the global pharma market has been revolutionizing the pharmaceutical industry and has opened new routes for treating various types of cancers and incurable diseases. In the past two decades, a noticeable part of clinical practices has been devoting progressively to these products. The first step to develop such an ATMP product is to be familiar with other approved products to obtain a general view about this industry trend. The present paper depicts an overall perspective of approved ATMPs in different countries, while reflecting the degree of their success in a clinical point of view and highlighting their main safety issues and also related market size as a whole. In this regard, published articles regarding safety, efficacy, and market size of approved ATMPs were reviewed using the search engines PubMed, Scopus, and Google Scholar. For some products which the related papers were not available, data on the relevant company website were referenced. In this descriptive study, we have introduced and classified approved cell, gene, and tissue engineering-based products by different regulatory agencies, along with their characteristics, manufacturer, indication, approval date, related regulatory agency, dosage, product description, price and published data about their safety and efficacy. In addition, to gain insights about the commercial situation of each product, we have gathered accessible sale reports and market size information that pertain to some of these products

    miR-455-5p downregulation promotes inflammation pathways in the relapse phase of relapsing-remitting multiple sclerosis disease

    Get PDF
    MicroRNA-455-5p (miR-455-5p) seems to have an anti-inflammatory role in the immune system since its expression is induced by IL-10 cytokine. Multiple sclerosis (MS) is a chronic demyelinating neurodegenerative disease of the central nervous system that is caused by an autoimmune inflammatory attack against the myelin insulation of neurons. The expression level of miR-455-5p and its role in MS pathogenesis has yet to be elucidated. We found that miR-455-5p expression was highly correlated with disease severity in MS patients. miR-455-5p expression inversely correlates with its inflammatory-predicted targets (MyD88 and REL) in relapse- and remitting-phase patients. Luciferase assays confirm that MyD88 and REL are direct targets of miR-455-5p. This study represents the first report of the miR-455-5p acts as an anti-inflammatory role in MS, at least partially through targeting MyD88 and REL. This study may provide important information for the use of miR-455-5p as a novel strategy to improve the severity of disease and control inflammation and attack in MS patients. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature

    An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    Full text link
    We present an all solid-state narrow line-width laser source emitting 670 mW670\,\mathrm{mW} output power at 671 nm671\,\mathrm{nm} delivered in a diffraction-limited beam. The \linebreak source is based on a fre-quency-doubled diode-end-linebreak pumped ring laser operating on the 4F3/2→4I13/2{^4F}_{3/2} \rightarrow {^4I}_{13/2} transition in Nd:YVO4_4. By using periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz100\,\rm GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented
    • 

    corecore