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Abstract 

The major unmet need and crucial challenge hampering the exciting potential of 

RNAi therapeutics in ophthalmology is to find an effective, safe and non-invasive means of 

delivering siRNA to the cornea. Although all tissues of the eye are accessible by injection, 

topical application is preferable for the frequent treatment regimen that would be necessary 

for siRNA-induced gene silencing. However, the ocular surface is one of the more complex 

biological barriers for drug delivery due to the combined effect of short contact time, tear 

dilution and poor corneal cell penetration. Using nanotechnology to overcome the challenges, 

we developed a unique silicon-based delivery platform for ocular delivery of siRNA. This 

biocompatible hybrid of porous silicon nanoparticles and lipids has demonstrated an ability to 

bind nucleic acid and deliver functional siRNA to corneal cells both in vitro and in vivo. 

Potent transfection of human corneal epithelial cells with siRNA-ProSilic® formulation was 

followed by a successful downregulation of reporter protein expression. Moreover, siRNA 

complexed with this silicon-based hybrid and applied in vivo topically to mice eyes 

penetrated across all cornea layers and resulted in a significant reduction of the targeted 

protein expression in corneal epithelium. In terms of siRNA loading capacity, system 

versatility, and potency of action, ProSilic provides unique attributes as a biodegradable 

delivery platform for therapeutic oligonucleotides. 
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1. Introduction 

Personalised medicine in the form of RNA interference (RNAi) is a promising 

therapeutic approach for a wide range of genetic disorders. Utilization of small interfering 

RNA (siRNA) molecules and a naturally occurring RNAi pathway leading to homology-

dependent degradation of a particular messenger RNA and specific gene downregulation has 

shown great potential in treating cancer, cardiovascular diseases, neurodegenerative diseases, 

inflammatory conditions, viral infections and ocular diseases [1]. Gene therapy represents an 

ideal strategy for treatment of diseases of the cornea – with some of them being rare and 

having no effective treatments beyond corneal transplant available. According to the World 

Health Organisation, corneal blindness is the fourth most common cause of blindness 

globally and is one of the major causes of visual deficiency after cataract, glaucoma and age-

related macular degeneration [2]. Although eye tissues are accessible by injection, a non-

invasive topical drug administration is considered preferable as a frequent patient-friendly 

treatment regimen because invasive routes of administration can be associated with 

complications such as intraocular infection, pain, and discomfort to the patient which result in 

poor patient compliance [3,4]. However, the intrinsic physical barriers, efficient drug 

clearance mechanisms and other complexities of ocular tissues pose a significant challenge to 

ocular nucleic acid delivery. The ocular surface is one of the more complex biological 

barriers for drug delivery due to the combined effect of short contact time, the presence of 

tear film and poor permeability of the cornea. One of the greater challenges to topical 

treatment of eye disorders is the structure of the cornea, which is adapted to form an effective 

barrier against fluid loss and pathogen penetration. The highly organized, multilayered, 

corneal epithelium, connected by intra-cellular tight junctions, and the hydrophilic stroma 

which lies underneath make the transport of drugs, into and across it, very difficult. 

Alternative absorption through the conjunctival pathway is considered non-productive due to 
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high vascularization of the conjunctiva, because the systemic circulation removes most of the 

drug before it can enter the inner ocular tissues [5]. Also a large portion of the topically 

applied dose may be absorbed systematically through the naso-lacrimal duct drainage thereby 

lowering ocular bioavailability [6]. Additionally, drug molecules are diluted on the pre-

corneal tear film, which itself has a rapid turnover rate. This, together with the blinking 

reflex, severely limits the residence time of topically administered drugs in the pre-corneal 

space and reduces their ocular bioavailability to below 5% of the instilled drug dose [7]. 

While most drugs exhibit difficulties in overcoming the eye-associated barriers, 

delivery of large hydrophilic charged RNA molecules is particularly challenging. Although 

there are examples of direct instillation of siRNA onto the ocular surface in animal 

experiments and clinical trials [8–11], the limited efficiencies of the treatments have often 

forced researchers to use high siRNA doses or a frequently repeated treatment regimen. 

Moreover, naked siRNA oligonucleotides do not readily cross the anionic cell membrane due 

to their high molecular weight, large size and negatively charged phosphate backbone. 

Additionally, siRNA in its native form is relatively unstable in vivo, prone to degradation by 

ribonucleases, which are ubiquitous both in the extracellular and the intracellular 

environment. Furthermore, exogenous RNA may stimulate innate immune responses, cause 

cellular toxicity or induce undesirable off-target effects [12,13]. Chemical modifications in 

siRNAs have provided means to overcome some of the problems associated with 

administration of synthetic nucleic acids in vivo [14], but the real potential of siRNA 

therapeutics would be realized only if an effective intracellular delivery to target cells is 

achieved. Conjugation of siRNA with lipids or ligands such as antibodies, aptamers, peptides 

or small molecules can facilitate cellular uptake and alter siRNA biodistribution [15]. Nucleic 

acid encapsulation within nanoparticles is potentially much more effective, because it could 

allow for the combination of all desired properties: siRNA protection, improved cell and 
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tissue penetration, controlled release of drug, and targeted delivery [16–18]. However, the 

design of a topically applied nanosystem effective in delivery of siRNA into corneal cells is 

made difficult due to distinctive anatomical and physiological barriers of the eye, as 

mentioned above. Often highly potent in vitro formulations fail to overcome challenges 

related to in vivo ocular delivery. For example, trials with commercially available transfection 

agents have been shown to be unsuccessful for in vivo delivery of siRNA when applied 

topically to intact [19] or debrided cornea [9]. 

Here we demonstrate for the first time that a non-viral vector hybrid silicon-lipid 

nanoparticle delivery system, the Prosilic®, composed of biodegradable silicon nanoparticles 

(SiNPs), lipids and amino acids is able to complex with the siRNA and deliver it to the cornea 

following non-invasive topical administration.  The delivery system strongly enhances the 

bioavailability of functional siRNA within the cytoplasm and mediates targeted gene 

expression reduction. In this unique delivery system reported within, the surface of the SiNPs 

is associated with amino acids and lipid agents which form surface linkages with the silicon 

nanoparticles to modify the rate of silicon hydrolysis, facilitating the biodegradation of 

silicon into its beneficial and bioactive form, orthosilicic acid, without polymerization [20]. 

 

2. Materials and Methods  

2.1. Preparation and characterization of silicon nanoparticles 

Si-NPs were sourced from a number of suppliers (silicon nanopowder #633097, <100 nm by 

TEM, purity ≥ 98% from Sigma-Aldrich, UK; and nano silicon powder #100GS, <100 nm by 

laser diffraction, ICP purity 99%, BET surface area >34 m2/g from Zhengzhou Dongyao Nano 

Materials, China). These were assessed in preliminary studies and determined to be suitable 

for use, with the Zhengzhou Dongyao material being used for the remainder of the studies. Si-

NPs were preliminary subjected to a slow evaporation technique, after methanol rinsing, until 
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dryness reached [21–23]. Afterwards the SiNPs have been analysed for determining Si content, 

available surface area, particle size and residual solvent prior to further formulation process. 

Inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed to determine 

the concentration of 28Si in the SiNPs following microwave-assisted acid digestion [24]. SiNPs 

fine powder was digested in a mixture of HCl and HNO3 (3:1, aqua regia) in a microwave oven 

Multiwave Pro (Anton Paar). The digestion was done at a maximal pressure of 40 bars and at 

a maximal temperature of 210°C. For each digestion cycle, a blank and a Certified Reference 

Material (Sigma Aldrich, UK) were added to respectively control the cleanliness of the tubes 

and determine the Si extraction recovery. After the digestion process, the samples were diluted 

to 5 mg/mL by adding ultra-pure water, centrifuged and filtered through 0.2 µm filters. The 

ICP-MS analysis was performed using Shimadzu ICPE-9800 and the content of 28Si was 

determined with a calibration curve after applying the dilution factor and the recovery factor 

obtained from the certified reference material.  Surface area analysis was performed by gas 

sorption using Quantachrome Nova 2200e and calculated from the Brunauer–Emmett–Teller 

(BET) theory. Before the measurements, the samples were degassed at 350°C overnight. 

Transmission electron microscopy (TEM) was used to visually examine the size and structure 

of SiNPs. Particle suspension was diluted to around 0.01% in deionized water and a drop of 

sample was dried at reduced temperature under vacuum over a carbon-coated copper grid. The 

samples were then observed at an accelerating voltage of 100 kV under FEI Talos L120C G2 

TEM. 

2.2. Preparation of silicon-based hybrid nanoparticle formulation 

The ProSilic delivery system was prepared with various compositions according to 

SiSaf patent US9132083B2 [20]. All chemicals used in the preparation were purchased from 

Sigma-Aldrich (UK) unless otherwise stated. In general, formulations were prepared starting 

with a lipid thin film generated by means of solvent evaporation and hydrated with SiNPs 
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aqueous solution as follows. In particular, phospholipids such as soybean phospatidylcholine 

(PC) and dioleoyl L-α-phosphaltitylethanolamine (DOPE) (Lipoid GmbH, Germany), and 

cationic lipids such as stearylamine and 3β-[N-(N',N'-

dimethylaminoethane)carbamoyl]cholesterol (DC-Chol) (Sigma-Aldrich, UK) were 

solubilized in a sufficient quantity of chloroform at concentrations in region of 5 to 10 

mg/mL, and then subjected to solvent evaporation by rotary evaporation (Heidolph Laborota 

4001). A PC:stearylamine mass ratio of 90:10 was used to formulate a first ProSilic variant 

prototype, named ProSilic-PS91G formulation, while a DOPE:DC-chol:stearylamine mass 

ratio of 60:30:10 was used to formulate a second Prosilic variant prototype, the ProSilic-

DSC613G formulation. SiNPs (Zhengzhou Dongyao), pretreated as described above, were 

dispersed at 1 mg/mL in aqueous solution containing 0.5% glycine using sonication. The 

silicon mixture was then used to hydrate the lipid thin film (at 1:4 SiNP to overall lipid 

weight ratio), and the final silicon-lipid preparation was lyophilized. Prior to analysis samples 

were rehydrated with nuclease-free water (Thermo Scientific, USA), and incubated at room 

temperature for 1 h unless otherwise described.  

2.3. Residual solvent analysis 

All samples were analyzed for residual solvents in accordance with USP method 

<467> [25]. For headspace gas chromatography, 1 mg of the sample was weighed into a 

headspace vial, then 1mL deionised water was added and the sample vial was capped with a 

magnetic lid. The analysis was performed using Shimadzu GC-2030 connected to an FID 

detector, with a Shimadzu RTx-624 column. Autosampler/Headspace conditions: incubation 

80°C for 60min, syringe 90°C, 250rpm, prepurge time 30sec, injection flow rate 10mL/min. 

Injector conditions: hydrogen as gas carrier, 140°C, split ratio 5:1, carrier gas linear speed 

35cm/sec. Oven temperature: baseline at 40°C for 12 min, then ramp/rate 16.7°C/min for 12 

minutes then hold at 240°C for 12 minutes. FID temperature 250°C, nitrogen flow 
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30mL/min, air flow 400mL/min. For blank measurement deionized water was used, and 

standard curves for methanol (50-5000ppm) and chloroform (2-80ppm) quantification were 

prepared from the certified reference material purchased from Sigma Aldrich, properly 

diluted with deionized water for reaching desired concentration.  

2.4. Loading of siRNA on ProSilic nanoparticles 

In the studies, two different siRNAs were used: siLUC targeting Firefly luciferase 

reporter gene (sense: 5′–CGA-CAA-GCC-UGG-CGC-AGU-AdTdT–3′, antisense: 5′– UAC-

UGC-GCC-AGG-CUU-GUC-GdTdT–3′) and a non-specific siRNA (NSC4) with an inverted 

bacterial ß-galactosidase sequence (sense: 5′–UAG-CGA-CUA-AAC-ACA-UCA-AdTdT–3′, 

antisense: 5′–UUG-AUG-UGU-UUA-GUC-GCU-AdTdT–3′) which served as a negative 

control to establish that any decrease in target gene expression is related to a sequence-

specific RNAi event [8,26–30]. Both siRNAs were designed as 21-mers with a central 19 bp 

duplex region and symmetric dTdT dinucleotide overhangs on each 3’end.  These were 

chemically synthesized and annealed by Eurogentec (Belgium). For nucleic acid 

complexation with both ProSilic formulations, siRNA dissolved in nuclease-free water was 

added to the aqueous solution of nanoparticles and incubated at room temperature for 60 

minutes prior to further analysis. To examine the best complexation ratio, siRNA was mixed 

with the nanoparticles at different w/w ratios and analysed by gel electrophoresis. 

Additionally, complexation efficiency was determined using high speed centrifugation and 

UV spectrophotometry as described below. An optimal loading ratio of 1:11 was chosen for 

all further experiments. 

2.5.Gel retardation assay 

To assess the formation of complexes between the siRNA and ProSilic variants, 

nanoparticles dispersed in nuclease-free water were combined with siRNA at various loading 

ratios (i.e. 1:2.75, 1:5.5, 1:11 or 1:22 w/w of siRNA to ProSilic) and analyzed by 
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electrophoresis on a 1% agarose gel (UltraPure Agarose, ThermoFisher, UK) in 0.5 ´ TBE 

(Tris-Borate-EDTA, ThermoFisher) for 40 min at 100 V. Equal amount of 150ng siRNA was 

loaded into each well. The gel was visualized using the Gel Logic 100 Imaging System 

(Kodak).  

2.6. Assessment of siRNA entrapment efficiency  

Complexation efficiency was determined as a fraction of entrapped siRNA compared 

to the total amount of nucleic acid added. ProSilic preparations were dispersed in nuclease-

free water, combined with siRNA at 1:2.75, 1:5.5, 1:11 or 1:22 w/w ratio and diluted to a 

final siRNA concentration of 100 µg/mL. Unloaded siRNA was used as a control. Samples 

were centrifuged at 21,000 rcf for 30 min (Mikro 200R centrifuge, Hettich, UK), and the 

unbound siRNA in the supernatant was measured using a NanoDrop 1000 spectrophotometer 

(Thermo Scientific, USA). The amount of entrapped siRNA was calculated from the 

difference of siRNA concentration in supernatant solutions of test samples and unloaded 

siRNA control (an initial amount added). The measurements were made in triplicate, and the 

values expressed as mean ± SD. The results were also used to estimate loading capacity by 

calculating the amount of siRNA bound to 1mg of ProSilic nanoparticles. 

2.7. Particle size and surface charge measurement 

Mean hydrodynamic particle size and zeta-potential of siRNA-loaded and empty 

ProSilic was determined using ZetaSizer Nano ZS (Malvern Panalytical, UK). All 

measurements were undertaken in nuclease-free water and particles loaded with siRNA were 

prepared at 1:11 w/w complexation ratio as used in further studies. Samples were diluted with 

nuclease-free water to yield count rate in a range of 100-400 kcps.  In parallel, lipoplexes 

composed of siRNA and Lipofectamine RNAiMAX (ThermoFisher Scientific, UK), a well-

known lipid-based carrier specifically designed for siRNA delivery, were prepared in 

nuclease-free water in accordance with manufacturer’s instructions and analyzed for particle 
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size and zeta-potential. All measurements were made at 25oC in triplicate and reported as 

mean ± SD. 

2.8. Cell culture 

Spontaneously immortalized human corneal epithelial (HCE-S) cell line was kindly 

gifted by J.T. Daniels (Institute of Ophthalmology, University College London, UK) [31]. 

The cells were cultivated in Dulbecco's Modified Eagle's Medium (DMEM, Invitrogen, UK) 

supplemented with 10% fetal bovine serum (FBS, Thermo Fisher, UK), incubated under 5% 

CO2 at 37oC and passaged following standard laboratory procedures. Twenty-four hours prior 

to transfection, HCE-S cells were seeded at 7 ´ 104 cells per well on 12-well plates for flow 

cytometry study or 7 ´ 103 cells per well in 96-well plates for dual luciferase assay. 

2.9. Transfection efficiency assessment by flow cytometry 

To study cellular uptake of siRNA complexed with ProSilic, a fluorescent 

oligonucleotide duplex known as an indicator of siRNA transfection (FAM-labelled siGLO, 

Dharmacon, UK) was complexed with nanoparticles at 1:11 loading ratio and added to HCE-

S cells at 0.1µM final concentration in DMEM. Transfection with Lipofectamine RNAiMAX 

at 0.1µM siGLO and 0.1µM naked siGLO were used as positive and negative controls, 

respectively. The cells were incubated at 37oC for 24 h, then detached from the plate surface 

with 0.25% trypsin-EDTA (Gibco, UK), washed with PBS and resuspended in Pharmingen™ 

Stain Buffer (BD Biosciences, USA) supplemented with propidium iodide (Invitrogen, UK) 

to allow identification of dead cells. Flow cytometry analysis was performed using a 

Gallios™ Flow Cytometer with Klauza software (both Beckman Coulter, UK). 

2.10.  Evaluation of siRNA delivery in vitro  

Knockdown of reporter gene expression was assessed with a dual luciferase assay, 

modified as previously reported [8,27–30], in which expression of Firefly luciferase, the 

siRNA target, is normalized to Renilla luciferase expression as an internal control of cell 
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transfection. HCE-S cells were firstly transfected with both Firefly and Renilla luciferase 

reporter plasmids [26] using Lipofectamine 2000 (Thermo Fisher, Invitrogen, UK) according 

to manufacturer’s protocol. Then 24 h later, cells were washed with PBS and treated with 

ProSilic formulations complexed with luciferase-specific siLUC or non-specific control 

NSC4. Samples were prepared at 1:11 loading ratio as described above, diluted with complete 

medium to 0.1µM final siRNA concentration and added to the cells which were then 

incubated at 37oC for 48 h. As a positive control, cells were transfected with 0.1 µM siLUC 

or NSC4 complexed with Lipofectamine RNAiMAX in accordance with manufacturer’s 

recommendation. Seven replicates were studied for each condition. The Dual-Luciferase 

Reporter Assay (Promega, UK) was used to measure the luciferase expression 48 hours after 

transfection. The assay was used according to manufacturer’s instructions. Briefly, the 

medium was removed, and cells were washed with PBS before replacement with Passive 

Lysis Buffer (Promega, UK). Culture plates were shaken on a plate shaker for 15 minutes to 

ensure cells were fully lysed, before the activities of both Firefly and Renilla luciferases were 

measured sequentially using a microplate luminometer (LUMIstar OPTIMA, BMG Labtech, 

UK). The values obtained for Firefly were normalized to Renilla activity, and results were 

expressed as a percentage of the relative luciferase activity measured in negative control 

(100%). 

2.11.  Live animal imaging 

Animals were used for the following experiments in accordance with the UK Animal 

Welfare Act with ethical approval by the Home Office (Scotland) and the DHSSPS (Northern 

Ireland). The experiments to assess delivery of fluorescent siRNA (DY-547-labeled siGLO, 

Dharmacon, UK) to the cornea were performed on wild-type C57BL/6 mice. To assess 

siRNA bioavailability and silencing activity of formulations, a reporter knock-in mouse line 

(Krt12+/luc2) was used, with the expression of Firefly luciferase specifically in the cornea 
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epithelium (under the control of the endogenous Krt12 promoter) [8]. This animal model was 

developed on a C57BL/6 background as previously reported and provides a reliable model 

for in vivo evaluation of siRNA delivery methods using reporter gene expression monitoring. 

For in vivo imaging, mice were anaesthetized using 1.5–2% isoflurane (Abbott Laboratories 

Ltd., UK) in ~1.5 L/min flow of oxygen. Fluorescence of siGLO was detected with a 

Xenogen IVIS Spectrum with LivingImage 3.2 software (both Perkin Elmer, UK) using 

DsRed filter combination (excitation 535 nm, emission 570 nm) at determined time points 

following topical application. To measure luciferase reporter gene expression, luciferin (30 

mg/mL D-luciferin potassium salt; Gold Biotechnology, USA) mixed 1:1 w/w with 

Viscotears gel (Novartis, UK) was dropped onto the eye of anaesthetized mouse immediately 

prior to imaging. Bioluminescence readouts were taken by IVIS Spectrum over a period of 

approximately 10 min and quantified using the LivingImage software after ensuring the 

signal remained stable within an acquisition time. For signal intensity quantification, a region 

of interest (ROI) was selected separately for each eye keeping ROIs parameters (size and 

shape) constant throughout experiments, and values expressed as the right/left eye ratio 

(RE/LE) using split body control measurement regime as previously described [8,32]. 

2.12. In vivo siRNA treatment 

Experiments were performed using a split body control by comparing the treatment 

under a test, in one eye, with a negative control in the other eye of the same animal. During 

treatment procedure mice were anesthetized as described above. ProSilic formulations 

containing 25µM siRNA complexed at 1:11 loading ratio were prepared and applied topically 

as a drop to the intact cornea in a total volume of 4 µL per eye. After application, the mouse 

was kept anesthetized for a further 15 min to allow absorption and maximize uptake. 

Following treatment, fluorescence and luminescence experiments were performed as 

described below. 
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2.13.  Assessment of siRNA penetration to the cornea 

To investigate delivery of siRNA to the cornea, in vivo fluorescence study was 

performed on wild-type mice using eye drops containing siGLO. The fluorescent siRNA-

ProSilic formulation was applied on top of the right eye, whereas same amount of naked 

siGLO was applied topically to the left eye of each mouse as a control. Fluorescence live 

imaging was acquired with IVIS Spectrum at 15min (i.e. immediately after treatment 

procedure) and 3, 6, and 24 h following siGLO application, and signal intensity normalized to 

background fluorescence measured prior treatment (i.e. untreated eyes) and quantified as 

described earlier. After measurements taken at either 3h or 24h, mice were sacrificed, and the 

eyes were enucleated, fixed in 4% paraformaldehyde in PBS for 30 min at room temperature, 

submerged in PolyFreeze (Sigma-Aldrich, UK), and immediately frozen at -80oC. Five-

micrometer sections were cut using a cryostat (CM 1850, Leica), mounted on APES-coated 

slides (3-aminopropyltriethoxysilane, Sigma Aldrich, UK) with DAPI-containing mounting 

medium (DAPI I, Vysis, USA) and fluorescence was visualized with AxioScope A1 

microscope equipped with a 20´/40´ N Archoplan lens on an AxioCam MRc camera (Carl 

Zeiss, Germany). 

2.14.  Assessment of siRNA-mediated gene silencing 

Luciferase reporter mice (n = 7) were used to determine bioavailability of siRNA in 

the cornea after topical delivery with ProSilic-DSC613G as a leading candidate. In a split 

body control experiment, luciferase-targeting siLUC complexed with ProSilic formulation 

was applied topically as a 4µl drop to the intact cornea of right eye (RE) in anesthetized mice, 

whereas the left eye (LE) was treated accordingly with nonspecific NSC4-ProSilic as 

negative control. Treatment was repeated daily for 8 consecutive days, with in vivo ocular 

luminescence measurements taken approximately 4-5 hours later. The effect of treatment on 

luciferase reporter gene expression was determined by measurement of luciferase 
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bioluminescent activity (as described above) daily throughout treatment regimen, and for a 

further 8 days after cessation of treatment for monitoring a wash-out period. Baseline 

luminescence was defined for each experimental animal by monitoring ocular luciferase 

activity at 24-hour intervals for 4 days prior to treatment. The relative RE/LE luciferase 

bioluminescent activity was quantified using the IVIS LivingImage software and plotted as 

an average value ± standard deviation. 

2.15.  Evaluation of in vivo safety (biocompatibility) 

In order to monitor the occurrence of toxic effects, mice eyes were examined by an 

ophthalmic surgeon at various time points during treatment and for a further 8 days after 

treatment withdrawal. After the final measurement of luminescence, animals were sacrificed 

and eyes enucleated for tissue histology carried out as previously described [8]. Histological 

slices (5µm) were obtained from each eye and stained with haematoxylin and eosin (H&E, 

both solutions from Sigma-Aldrich, UK) to assess general morphology of the cornea. 

2.16.  Statistical analysis 

Data are presented as the means ± standard deviation and are representative for at 

least 3 independent measurements, unless stated otherwise. Statistical significance was 

assessed with a one or two-way ANOVA followed by the Tukey’s HSD post hoc test at 95% 

confidence level. For in vitro dual luciferase assay, a two-tailed Student’s t test was 

performed for each formulation separately to analyze knockdown level (siLUC vs NSC4 

control). For the in vivo luciferase experiment, the statistical analysis was done by comparing 

the average RE/LE ratio for all seven mice in the first 4 days before the beginning of the 

treatment (set as baseline) with the RE/LE ratios measured on the following days. Statistical 

analysis was performed using GraphPad Prism software (GraphPad Software, USA). 
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3. Results 

3.1. SiNPs characterization  

SiNPs, after being subjected to methanolic rinsing and slow evaporation process, were 

characterized for determining a content of silicon, particle size, zeta-potential and specific 

surface area. ICP analysis revealed purity above 98% with other metal traces below 2% of the 

overall mass. TEM images confirmed spherical shape and the particle size within the range of 

100nm. The mean surface area as measured by BET was approx. 34 m2/g. Zeta-potential of 

SiNPs was determined to be -30.4 mV ± 3.3 and accounted a typical negative charge of 

porous silicon material that relates to the presence of hydroxyl groups on SiNPs surfaces 

[33]. After formulating the silicon-based couriers, samples were analyzed for residual 

solvents, and both chloroform and methanol level were determined to be below the minimum 

concentration limit (60ppm and 3000ppm, respectively) [25]. 

3.2. Characterization of the silicon-based siRNA delivery system 

Two ProSilic variants were formulated through surface functionalization of silicon 

nanoparticles with cationic lipids commonly used in nucleic acid delivery, stearylamine and 

DC-cholesterol, which resulted in hybrid particles with similar hydrodynamic sizes of 

~350nm and comparative positive zeta potential values (Table 1). Complexation of cationic 

ProSilic formulations with siRNA studied by gel electrophoresis showed full entrapment of 

nucleic acid with a minimum 1:11 loading ratio (Figure 1A). The percentage of complexed 

siRNA for varying w/w ratios was determined by spectrophotometry and calculated from the 

differences of siRNA amount added to the carrier and the concentration of siRNA in solutions 

after particle separation (Figure 1B). Higher siRNA entrapment efficiency was observed for 

complexation with ProSilic-DSC613G containing cationic cholesterol derivative compared to 

ProSilic-PS91G functionalized only with stearylamine as cationic lipid. ProSilic-DSC613G 

formulation showed siRNA loading capacity in a range of 6.3-8.7 nmol per 1mg 
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nanoparticles, whereas ProSilic-PS91G variant showed to be capable of entrapping 2.3-3.4 

nmol siRNA per 1mg particles. Following siRNA loading studies, a fixed 1:11 complexation 

ratio was chosen for all further experiments. 

As the physicochemical properties of nanoparticles play an important role in drug 

delivery, particle size and surface charge of siRNA-loaded complexes were determined (Table 

1). ProSilic-DSC613G appeared similar in dimensions and zeta potential when empty and 

loaded carrier were compared, whereas ProSilic-PS91G showed an increased mean particle 

size and negative surface charge when complexed with siRNA suggesting an absorption of 

nucleic acid molecules on the surface of hybrid particles in addition to internal siRNA 

entrapment. Both ProSilic formulations considered in this study were compared to the gold 

standard in gene silencing, Lipofectamine™ RNAiMAX, a commercially available lipid-

based carrier specifically designed for siRNA delivery. ZetaSizer analysis of empty and 

siRNA-loaded RNAiMAX also showed an increase in particle size and an inversion of 

surface charge from positive to negative values after complexation with nucleic acid.  

 

 

 

Figure 1. The optimization of siRNA-ProSilic complexation ratio. (A) Gel retardation 

assay in which uncomplexed siRNA migrated through 1% agarose gel, while the siRNA 

bound by ProSilic remained immobilized within the wells. Line 1 (from left side) was loaded 

with unformulated siRNA (control). Line 2-5 and 6-9 were loaded with siRNA formulated 
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with ProSilic-DSC613G or ProSilic-PS91G variants, respectively, at increasing ratio from 

1:2.75 to 1:22 (w/w). (B) Entrapment efficiency expressed as a fraction of bound siRNA 

compared to the total amount of nucleic acid added. The siRNA was complexed with 

ProSilic-DSC613G or ProSilic-PS91G at increasing loading ratio from 1:2.75 to 1:22 (w/w). 

Three replicates were studied for each condition and means ± standard deviation, are 

presented.  

 

Table 1. Average particle size and zeta potential of tested samples. 

 Sample Particle size  
[nm] 

Zeta potential  
[mV] 

ProSilic-PS91G empty 351 ± 32 +36.6 ± 1.0 
with siRNA 462 ± 57 -39.7 ± 0.6 

ProSilic-DSC613G empty 361 ± 39 +40.9 ± 0.9 
with siRNA 397 ± 44 +34.9 ± 0.7 

RNAiMAX empty 133 ± 3    +23.2 ± 12.0 
with siRNA 212 ± 32 -57.0 ± 7.1 

Note: Measurements were undertaken in nuclease-free water. Data represent mean ± standard 

deviation (n=3). SiNPs particles alone having size of 100nm in average showed negative zeta 

potential of -30.4 mV ± 3.3.    

 

3.3. Evaluation of in vitro siRNA delivery to corneal cells 

For initial in vitro screening, human epithelial corneal epithelial cell line (HCE-S) was 

used to evaluate ProSilic efficacy in cellular transfection and its potential cytotoxicity. 

Transfection efficiency was quantified by flow cytometry analysis performed 24 hours after 

treatment with fluorescent oligonucleotide duplex loaded to carrier system (Figure 2A). 

ProSilic-DSC613G showed 55±2% and ProSilic-PS91G 65±6% of FAM-positive cells in 

comparison to 84±1% observed for RNAiMAX reagent. The post-transfection cell viability 

assessed based on live/dead staining with propidium iodide (PI), a common indicator of 

membrane disintegration, showed ProSilic formulations were well tolerated by corneal 

epithelial cells (Figure 2B) in contrary to Lipofectamine transfection agent, which in spite of 

being highly potent for the delivery of exogenous nucleic acids into cells in vitro, is not 
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suitable for clinical applications. Over 50% of cells transfected with Lipofectamine 

RNAiMAX were shown to have damaged membranes as indicated by staining with PI dye 

whereas more than 86% and 98% intact cells were observed after treatment with ProSilic 

formulations. 

Next, bioavailability of siRNA was evaluated in gene expression studies using dual 

luciferase reporter assay. After treatment of HCE-S cells with 0.1µM siLUC complexed with 

the ProSilic nanoparticles (Figure 2C), a knockdown of 46±5% (p<0.01, siLUC vs NSC4 

control) and 38±8% (p<0.01) was achieved for ProSilic-PS91G and ProSilic-DCS613G 

variants, respectively, whereas siLUC transfected with RNAiMAX reduced luciferase 

reporter gene expression by 66±9% (p<0.001). Taken together, ProSilic delivery system 

demonstrated up to 70% potency of commercial siRNA transfection reagent while being safe 

and well-tolerated by the cells.    

 

 

Figure 2. In vitro siRNA delivery to human corneal epithelial cells. Transfection 

efficiency (A) and post-transfection cell viability (B) assessed in HCE-S cells by flow 

cytometry analysis after 24-hour incubation with 0.1µM fluorescent FAM-siGLO complexed 

with either ProSilic-PS91G, ProSilic-DSC613G or Lipofectamine RNAiMAX. Transfection 

efficiency is expressed as a percentage of FAM-positive cells in total gated. Cytotoxicity of 

formulations expressed as a percentage of PI-negative cells was normalized to negative 

control (vehicle). Three replicates were studied for each condition and means ± standard 
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deviation are presented. (C) In vitro luciferase gene knockdown assessed on HCE-S cells 

treated with 0.1µM siRNA: a luciferase-targeting siRNA (siLUC, black bar) or a negative 

control nonspecific siRNA (NSC4, grey bar), complexed with either ProSilic-PS91G, 

ProSilic-DSC613G or Lipofectamine RNAiMAX (positive control). Relative luciferase 

activity was measured 48 hours after siRNA treatment using dual luciferase reporter gene 

expression assay and expressed as a percentage of the negative control (untreated cells, white 

bar). Data shown is a mean of n=6 replicates ± standard error.  

 

3.4. Evaluation of in vivo ocular siRNA delivery by topical ProSilic administration 

Following the demonstration of successful siRNA delivery and gene knockdown in 

vitro, the two ProSilic variants were evaluated in vivo for topical administration to the 

anterior eye. Firstly, ProSilic-PS91G and ProSilic-DCS613G variants were complexed with 

fluorescent siGLO and applied as an eye drop to wild-type mice following a unilateral 

procedure with the naked siGlo control being instilled in the opposite eye. The ocular 

fluorescence was monitored for up to 24 h using an in vivo imaging system (Figure 3A). The 

first measurement was performed 15 min after administration when the mouse was still under 

anaesthesia after treatment, and the following measurements were repeated at 3, 6, and 24 h 

post-administration. Although an equal amount of 100pmol siGLO was applied topically to 

each eye, the highest fluorescence intensity measured 15 min later was observed for the 

treatment with ProSilic-DSC613G, subtly less for ProSilic-PS91G, and two times less for 

naked siGLO (p<0.05) that indicated an increased ocular surface adhesion of formulated drug 

and an improved residence time in comparison with naked oligonucleotide. Three hours later, 

in vivo fluorescence signal decreased 3-fold in siGLO-ProSilic-DSC613G-treated eyes, 

whereas it had returned to baseline levels for siGLO-ProSilic-PS91G and unformulated 

siGLO eye drops due to active ocular clearance mechanisms. Although further gradual 

decrease of in vivo signal intensity was observed, fluorescence in the eyes treated with 

siGLO-ProSilic-DSC613G persisted for up to 24 h and was significantly higher than in eyes 
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treated with the unformulated naked siGLO at all the time points (p<0.01 at 3 h and 6 h, and 

p<0.05 at 24 h). This suggested an effective uptake of topically administered siRNA drug 

formulated with ProSilic. However, to verify nanoparticle permeation into the tissue, 

distribution of the siRNA throughout the cornea layers was investigated by fluorescence 

microscopy of post-treatment corneal cryosections (Figure 3B). Red siGLO fluorescence was 

detected throughout all corneal layers in all ProSilic-treated sections of eyes collected 3 hours 

after eye drops application, whereas no fluorescence above background was observed in the 

naked siGLO control. Twenty-four hours after the administration of siRNA formulations, the 

fluorescence was only observed in the cornea sections treated with ProSilic-DSC613G, thus 

considered as leading candidate for further evaluation. 



Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles   

21 
 

 
Figure 3. In vivo topical siRNA delivery. Wild-type mice were treated with an equal amount 

of naked or formulated fluorescent siRNA applied topically as eye drops and live imaging 
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was carried out at 15 minutes and 3, 6, and 24 hours after treatment (A). Experiment was 

performed with a split body control in which siGLO loaded to ProSilic (right eye, RE) was 

compared with naked siGLO (left eye, LE). The red and yellow pseudo-colours represent the 

intensity of the fluorescence as indicated (not the colour of the fluorescent signal). Graph 

displays ocular fluorescence intensity, and values are expressed a mean (± standard error) of n 

= 3-6 independent measurements. *, p<0.05; **, p<0.01 vs untreated control (baseline);  ^, 

p<0.05; ^^, p<0.01 ProSilic-PS91G vs naked siGLO, and #, p<0.05; ##, p<0.01 ProSilic-

DSC613G vs naked siGLO by two-way ANOVA. (B) Corneal 5µm cryosections of the mouse 

eyes, collected and fixed after 3 or 24 hours post-treatment, were imaged using fluorescence 

microscope after mounting with DAPI-containing medium (scale bar, 100µm). The nuclei are 

stained blue, whereas the red fluorescence represents siGLO, and the arrows indicate outer 

surface. 

 

Following in vivo uptake studies, the siRNA delivery with leading ProSilic-DSC613G 

candidate was further investigated in functional assays using a murine reporter model with 

luciferase expression confined exclusively to the corneal epithelium. Prior to in vivo 

treatment, basal corneal luciferase activity in reporter mice was quantified every 24 h for 4 

days to confirm a consistent right-to-left ratio for a split body control experiment. ProSilic-

DSC613G complexed with siLUC or control siRNA was applied topically as eye drops to 

opposite eyes of the same animal 8 times in daily intervals, and corneal luciferase expression 

was evaluated every day by live animal imaging throughout treatment regimen and over 

following 8 days (Figure 4). A reduced luciferase expression was observed within 24 h of 

treatment initiation, and a maximal inhibition (41% ±13, p<0.001) was achieved at day 11. A 

significant gene silencing effect persisted throughout entire treatment regimen and continued 

for 4 days after termination of treatment. As expected, the reduced ocular bioluminescence 

level gradually returned to baseline after treatment withdrawal which indicated a successful 

recovery from gene repression. Importantly, gross examination of treated eyes and daily 

visual inspection of animals following topical treatment revealed no adverse effects of eye 
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drops. At no time point were any signs of swelling, edema or inflammation noted. H&E 

staining of treated eye sections did not show any alteration of the corneal layers, nor evidence 

of inflammation or cellular infiltration (Figure 4D), suggesting ProSilic formulation was 

well-tolerated in vivo. 
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Figure 4. In vivo siRNA-mediated gene silencing in reporter mice after topical delivery. 

Reporter mice expressing luciferase specifically in the corneal epithelium were treated with 
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eye drops containing siLUC complexed with ProSilic-DSC613G applied to right eye (RE). 

As a negative control non-specific siRNA (NSC4) complexed with same ProSilic-DSC613G 

was applied topically to left eye (LE). The bioluminescent luciferase activity was measured 

using Xenogen IVIS Spectrum system daily throughout treatment regimen, and for a further 8 

days after cessation of treatment for monitoring a wash-out period. Baseline luminescence 

was defined for each experimental animal by monitoring ocular luciferase activity at 24-hour 

intervals for 4 days prior to treatment. (A) Representative daily images of one reporter mice 

during monitoring the effect of the topical treatment with siRNA complexed with ProSilic-

DSC613G. (B) Graph showing individual bioluminescence readouts performed on seven 

reporter mice using split body control, expressed as the right eye/left eye ratio (RE/LE). (C) 

The effect of topical treatment on luciferase reporter gene expression determined for a 

treatment group (n = 7) expressed as an average value of relative RE/LE luciferase 

bioluminescent activity (siLUC vs NSC4) ± standard deviation. Significant knockdown of 

luciferase with siLUC-ProSilic was observed from day 5 to day 16: **p < 0.01, ***p < 0.001. 

(D) Representative sections of H&E stained central and peripheral cornea of eyes treated with 

eye drops containing siRNA with ProSilic-DSC613G collected from mice after the 

termination of experiment. 

 

4. Discussion 

The potency and versatility of siRNA therapeutics has attracted drug developers who 

have envisioned that RNAi technology will help to overcome the limitations of classical small 

molecule drugs in targeting certain disease-associated proteins [34]. However, the full potential 

of therapeutic RNAs remains unfulfilled due to a compelling deficiency in effective delivery 

systems. In this paper, we present evidence indicating that our hybrid silicon-lipid nanoparticle 

delivery system exhibits characteristics that enable efficient encapsulation and intracellular 

delivery of siRNA, and prove it effective in topical delivery to the eye which will allow 

development of a non-invasive treatment of ocular pathologies.  

A nucleic acid carrier is a required component of RNAi-based therapy because 

treatment with unmodified naked siRNA does not result in effective knockdown of the target 

gene [35]. Large, highly charged siRNA molecules cannot pass freely through the plasma 
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membrane unless conjugated or complexed with delivery agents. Besides chemical 

modifications to increase stability, target specificity and potency [14,36], various molecules 

can be conjugated to the 5’ or 3’ ends of siRNA strands to facilitate cellular uptake [15]. An 

incorporation of ligands such as peptides, aptamers or cholesterol can allow for cell specific 

targeting and improve distribution and cellular uptake of siRNA bioconjugates [15,37]. 

However, the choice of modification pattern depends on the specific siRNA sequence, route 

of delivery and type of application, and the effect of the modification is generally difficult to 

predict, with empirical testing needed to ensure that the resulting molecule is still effective 

and retains the desired properties [38]. Also, there are concerns about degradation of these 

artificially altered siRNA molecules which may generate metabolites with unsafe or 

unwanted reactivity [12]. Moreover, an uptake of siRNA by fluid-phase endocytosis should 

not be confused with the delivery of functional siRNA into the cytoplasm [35]. Endosomal 

entrapment and lysosomal degradation represents one of the key effect-limiting factors in 

siRNA delivery [8,13,39]. In view of these circumstances, the encapsulation of unmodified or 

partially modified siRNA within nanoparticles is potentially beneficial because, in addition to 

siRNA protection, better tissue penetration and controlled release can be achieved [16–18]. 

Also retargeting the drug by a replacement of siRNA sequence without changing in vivo 

pharmacokinetics raises the potential for truly ‘programmable’ therapeutics [34], expediting 

progress of novel siRNAs to clinical application. 

Nanotechnology has revolutionized the field of ocular drug delivery by improving the 

bioavailability of therapeutic molecules at ocular tissues [4,16,40,41]. Nanoparticles with 

desired surface characteristics get internalized by cells which, in turn, enables penetration of 

the entrapped therapeutic agents across the eye. The ProSilic carrier system reported herein is 

a hybrid delivery technology that combines elemental silicon with lipids and amino acids, 

that demonstrates an ability to bind siRNA and deliver it effectively into the cytoplasm 
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which, in turn, leads to targeted downregulation of gene mRNA expression. The use of 

porous silicon and porous silica as a carrier for the delivery of nucleic acid has been reported 

previously, however, the importance of the degradation products of such carrier systems has 

not received sufficient attention [42–47]. In ProSilic technology, through association of a 

stabilizing agent to the surface of silicon nanoparticles, the rate of silicon hydrolysis can be 

controlled, such that the SiNPs dissolve to the orthosilicic acid [20], which is a major 

bioavailable form of silicon for both humans and animals and an essential micromineral for 

cellular health [48]. Additionally, the presence of lipids in the composition has a beneficial 

effect on the surface properties of the nanoparticles, enhancing their interaction with cell 

membrane, improving loading of siRNA and controlling the release of cargo. Cationic lipids 

promote the interactions between the carrier and the loaded nucleic acid by providing a 

positive zeta potential and helping to condense anionic siRNA molecules to be incorporated 

into the system [49]. The role of electrostatic interactions in the loading of charged molecules 

into the porous core has been previously demonstrated. Liu et al. showed that a fusion of 

positively charged liposomes with negatively charged mesoporous silica particles can be used 

to load these particles with negatively charged molecules at high concentrations [37]. In our 

studies, a simple co-incubation of siRNA with hybrid silicon-lipid delivery system allowed 

for efficient complexation of nucleic acid with the nanoparticles, and showed siRNA loading 

capacity in a range of 2.3-8.7 µmol per gram of ProSilic which compares favourably with 

other delivery systems [43,51–53]. It was observed that the type of surface functionalization 

of silicon particles with different lipids influenced the siRNA loading efficiency and resulted 

in various zeta potential values for siRNA-loaded particles. As shown by our experimental 

results, both tested formulations were positively charged before siRNA complexation, 

whereas an addition of siRNA to the nanoparticles inverted the positive zeta potential of 

ProSilic-PS91G but had no significant effect on ProSilic-DCS613G net charge. Considering a 
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lower loading capacity was observed for ProSilic-PS91G, a portion of siRNA cargo is likely 

to have associated on the outer surface of nanoparticles and exposed negatively charged 

phosphate groups whereas ProSilic-DCS613G allowed greater encapsulation of siRNA and 

expressed cationic zeta potential. For comparison, lipofectamine also showed an inversion of 

surface charge from positive to negative values upon siRNA complexation, consistent with 

results reported previously [54]. Nevertheless, while all formulation samples were shown to 

be effective in siRNA delivery to corneal epithelial cells in vitro, it was observed that the 

ProSilic formulations demonstrated much greater cellular compatibility compared to 

RNAiMAX. 

Adjustment of the lipid composition allows not only control of the cargo content, but 

also optimization of the physicochemical properties of nanoparticles for specific biological 

applications. It is commonly known that particle size, shape and surface charge are key 

determinants in cellular uptake of nanoparticles, however zeta-potential is considered to have 

the highest impact on the internalization [55] because most charged functional groups are 

responsible for active nanoparticle interaction with cells [56]. Positively charged complexes 

are well-known to bind to the negatively charged cell membrane components, such as 

proteoglycans, and translocate across the plasma membrane. There has been also evidence of 

uptake of negatively charged particles despite their unfavourable interaction with the 

negatively charged domains of cell membrane [55]. Thus, variation of the particle surface 

properties could potentially control their binding to the tissue but also influence intracellular 

fate by targeting to certain cellular compartments, such as lysosomes, mitochondria, or 

cytoplasm [48,49]. In ocular drug delivery, a positive charge can facilitate effective adhesion 

to the cornea epithelial surface, and account for a strong interaction with the negatively 

charged eye mucosa and anionic mucins present in the tear film, prolonging the residence 

time and enhancing the drug bioavailability in the internal tissue of the eye [57]. In agreement 
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with previous reports [58,59], our in vivo data indicated that net positive charge carried by the 

transfection complex can facilitate an effective penetration of the nano-system across ocular 

tissues. 

The results presented here are the first example of successful topical delivery of siRNA 

to the cornea using biocompatible and biodegradable nanoparticles. ProSilic has been shown 

to be capable of complexing the siRNA, delivering it into the cells of all corneal layers, and 

releasing functional siRNA into the cytoplasm resulting in specific knockdown of mRNA 

expression as demonstrated in this transgenic mouse model. While RNAi-induced gene 

silencing within the cornea, at levels sufficient for therapeutic application has proven to be 

extremely challenging, our achievements have exceeded in vivo gene silencing using non-

invasive topical siRNA delivery reported to date [8]. With further optimization of the platform 

and siRNA design a greater gene knockdown in the cornea should be achieved, currently 

accomplishable only by intrastromal injections with chemically modified siRNAs. Such 

invasive methods as ocular injection are considered unsuitable for repeated and long-term 

application in the ophthalmology clinic. Furthermore, nanoparticles can offer a sustained drug 

release and increased residence time of entrapped siRNA molecules in ocular tissues which can 

help to reduce the frequency of drug administration for the effective treatment of ocular 

diseases. The RNAi approach is a particularly attractive tool for a selective gene therapy 

treatment of a wide spectrum of corneal diseases, including corneal dystrophies such as 

Meesmann Epithelial Corneal Dystrophy [26], TGFBI-associated corneal dystrophies [28] or 

Fuchs Endothelial Corneal Dystrophy [60], and inflammatory diseases [2,11]. Corneal 

dystrophies are heritable diseases that affect the transparency or shape of the cornea which can 

lead to progressive vision loss and eventually blindness [61]. Symptoms can start to show from 

an early age, or can be induced due to surgical interventions, such as elective refractive laser 

correction surgery, cataract surgery or lamellar or penetrating keratoplasty, designed to treat 
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the pathology [62,63]. Given the perpetual shortage of corneal donors and the limited graft 

survival rates, surgical treatment for these genetic disorders is often reserved as a last resort 

and offered once the patient has endured a lifetime of pain and deteriorating eyesight, to near 

visual loss with significant impact upon quality of life [64–66].  Therefore, the development of 

a mutation-specific, gene silencing topical eye-drop treatment would be a major advance in 

how these ophthalmology genetic disorders are treated and managed – offering an early 

intervention to prevent a lifetime of suffering and vision loss with all the socioeconomic and 

healthcare intervention costs. However, key to the success of this therapeutic strategy is 

efficient siRNA delivery to the targeted cells. 

 

5. Conclusions 

In summary, to achieve optimal gene silencing efficiency for RNAi effectors, a 

successful delivery of functional RNA oligonucleotides is critical. Our biodegradable and 

bioavailable silicon-lipid hybrid delivery system, ProSilic®, demonstrates the ability to bind 

siRNA at high concentrations and deliver the cargo to the cells both in vitro and in vivo. 

Furthermore, a proof of concept study using an animal corneal reporter model revealed a 

significant knockdown of gene expression after non-invasive topical eye drop administration 

of siRNA complexed with the ProSilic® system. Due to the versatility of this delivery 

system, we anticipate that it could be further tailored to efficiently deliver alternative gene 

therapy agents such as CRISPR Cas complexes [64,67–69] and custom made to target other 

cells / tissues / organs in a multitude of applications. A local and topical gene therapy 

approach as outlined within would overcome many of the concerns surrounding systemic 

delivery and the need for repeated injections into the eye. Most importantly progress made by 

our team and others investigating the potential for gene therapy for corneal disease will allow 

this research to move toward the clinical setting and ultimately reach the patient.   
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