258 research outputs found

    Prognostics of aerospace electromechanical actuators: Comparison between model-based metaheuristic methods

    Get PDF
    Electro-Mechanical Actuators (EMAs) deployment as aircraft flight control actuators is an imperative step towards more electric concepts, which propose an increased electrification in aircraft subsystems at the expense of the hydraulic system. Despite the strong benefits linked to EMAs adoption, their deployment is slowed down due to the lack of statistical data and analyses concerning their often-critical failure modes. Prognostics and Health Management (PHM) techniques can support their adoption in safety critical domains. A very promising approach involves the development of model-driven prognostics methodologies based on metaheuristic bio-inspired algorithms. Evolutionary (Differential Evolution (DE)) and swarm intelligence (particle swarm (PSO), grey wolf (GWO)) methods are approached for PMSM based EMAs. Furthermore, two models were developed: a reference, high fidelity model and a monitoring, low fidelity counterpart. Several failure modes have implemented: dry friction, backlash, short circuit, eccentricity and proportional gain. The results show that these algorithms could be employed in pre-flight checks or during the flight at specific time intervals. Therefore, EMA actual state can be assessed and PHM strategies can provide technicians with the right information to monitor the system and to plan and act accordingly (e.g. estimating components Remaining Useful Life (RUL)), thus enhancing the system availability, reliability and safety

    R-loop formation and conformational activation mechanisms of Cas9

    Full text link
    Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage13^{1-3}. The programmable activity of Cas9 has been widely utilized for genome editing applications46^{4-6}, yet its precise mechanisms of target DNA binding and off-target discrimination remain incompletely understood. Here we report a series of cryo-electron microscopy structures of Streptococcus pyogenes Cas9 capturing the directional process of target DNA hybridization. In the early phase of R-loop formation, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the distal end of the target DNA duplex. Guide-target hybridization past the seed region induces rearrangements of the REC2 and REC3 domains and relocation of the HNH nuclease domain to assume a catalytically incompetent checkpoint conformation. Completion of the guide-target heteroduplex triggers conformational activation of the HNH nuclease domain, enabled by distortion of the guide-target heteroduplex, and complementary REC2 and REC3 domain rearrangements. Together, these results establish a structural framework for target DNA-dependent activation of Cas9 that sheds light on its conformational checkpoint mechanism and may facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity

    Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells.

    Get PDF
    Osteosarcoma is a highly metastatic tumor affecting adolescents, for which there is no second-line chemotherapy. As suggested for most tumors, its capability to overgrow is probably driven by cancer stem cells (CSCs), and finding new targets to kill CSCs may be critical for improving patient survival. TP53 is the most frequently mutated tumor suppressor gene in cancers and mutant p53 protein (mutp53) can acquire gain of function (GOF) strongly contributing to malignancy. Studies thus far have not shown p53-GOF in osteosarcoma. Here, we investigated TP53 gene status/role in 3AB-OS cells-a highly aggressive CSC line previously selected from human osteosarcoma MG63 cells-to evaluate its involvement in promoting proliferation, invasiveness, resistance to apoptosis and stemness. By RT-PCR, methylation-specific PCR, fluorescent in situ hybridization, DNA sequence, western blot and immunofluorescence analyses, we have shown that-in comparison with parental MG63 cells where TP53 gene is hypermethylated, rearranged and in single copy-in 3AB-OS cells, TP53 is unmethylated, rearranged and in multiple copies, and mutp53 (p53-R248W/P72R) is post-translationally modified and with nuclear localization. p53-R248W/P72R-knockdown by short-interfering RNA reduced the growth and replication rate of 3AB-OS cells, markedly increasing cell cycle inhibitor levels and sensitized 3AB-OS cells to TRAIL-induced apoptosis by DR5 up-regulation; moreover, it strongly decreased the levels of stemness and invasiveness genes. We have also found that the ectopic expression of p53-R248W/P72R in MG63 cells promoted cancer stem-like features, as high proliferation rate, sphere formation, clonogenic growth, high migration and invasive ability; furthermore, it strongly increased the levels of stemness proteins. Overall, the findings suggest the involvement of p53-R248W/P72R at the origin of the aberrant characters of the 3AB-OS cells with the hypothesis that its GOF can be at the root of the dedifferentiation of MG63 cells into CSCs

    A post hoc Evaluation of Data from the HAWK and HARRIER Trials

    Get PDF
    Funding Information: Development of this publication was funded by Novartis Pharma AG including medical writing and editorial assistance. The sponsor participated in data analysis, interpretation of the data, and review of the manuscript. Publisher Copyright: © 2022 The Author(s). Published by S. Karger AG, Basel.Introduction: This post hoc analysis applies a fixed dosing stratification approach to patient-level brolucizumab data from the phase III HAWK and HARRIER trials to determine the proportion of patients who would have been assigned to fixed dosing regimens with treatment intervals of 8, 12, or 16 weeks (q8w, q12w, or q16w) based on the presence/absence of disease activity (DA) following the loading phase. The analysis also simulates central subfield thickness (CSFT) data to estimate the anatomical outcomes if the patients had been thus assigned. Of note, the limitations of this analysis include the post hoc nature of the work and the inability to directly compare HAWK and HARRIER with TENAYA and LUCERNE due to the differences in design. Design: This study was a post hoc modelling analysis of patient-level data. Methods: Using patient-level data from HAWK and HARRIER, patients (n = 730) were allocated to a fixed q16w, q12w, or q8w regimen based on assessment of DA at weeks 16 and 20. Two definitions of DA were used: DA 1, based on a phase II study of faricimab, and DA 2, a definition derived from common clinical consideration including visual acuity and anatomical changes. CSFT simulations were performed using a pharmacokinetic/pharmacodynamic model describing CSFT response to anti-VEGF treatment. Outcome measures were modelled patient allocation to fixed regimens and mean CSFT reduction. Results: Using DA definitions 1 and 2, respectively, 78% and 76% of patients in the brolucizumab arm were allocated to a greater than or equal to q12w regimen, and 56% and 52% were allocated to a q16w regimen. Mean reduction in CSFT was similar between the two study drugs with both DA definition assumptions. Conclusions: This analysis demonstrates the potential durability of action and effectiveness of brolucizumab.publishersversionpublishe

    Spontaneous traumatic macular hole closure in a 50-year-old woman: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Traumatic macular holes (TMH) are well-known complications of ocular contusion injury. Spontaneous closure occurs in approximately 50% of cases, but rarely after the age of thirty. We report a case of spontaneous closure of a full thickness macular hole due to a blunt trauma and we suggest possible mechanisms for this closure.</p> <p>Case presentation</p> <p>A 50-year-old Greek woman was referred with a history of reduced best-corrected visual acuity after blunt trauma to her right eye. Diagnosis was based on fundoscopic, optical coherence tomography as well as fluorescein angiography findings with follow-up visits at two days, 20 days and five months. Fundoscopy revealed a full-thickness TMH with a minor sub-retinal hemorrhage and posterior vitreous detachment. The presence of a coagulum in the TMH base was observed. Subsequently, TMH closure was observed.</p> <p>Conclusion</p> <p>The clot in the TMH base, potentially a hemorrhage by-product containing a significant quantity of platelets, may have simulated the clot observed after autologous serum use, thus facilitating a similar effect. This may have stimulated glial cell migration and proliferation, thus contributing to spontaneous hole closure.</p

    Angiotensin receptor I stimulates osteoprogenitor proliferation through TGFβ-mediated signaling

    Get PDF
    Clinical studies of large human populations and pharmacological interventions in rodent models have recently suggested that anti-hypertensive drugs that target angiotensin II (Ang II) activity may also improve loss of bone mineral density. Here we identified in a genetic screen the Ang II type I receptor (AT1R) as a potential determinant of osteogenic differentiation and, implicitly, bone formation. Silencing of AT1R expression by RNA interference severely impaired the maturation of a multipotent mesenchymal cell line (W20-17) along the osteoblastic lineage. The same effect was also observed after the addition of the AT1R antagonist losartan but not the AT2R inhibitor PD123,319. Additional cell culture assays traced the time of greatest losartan action to the early stages of W20-17 differentiation, namely during cell proliferation. Indeed, addition of Ang II increased proliferation of differentiating W20-17 and primary mesenchymal stem cells and this stimulation was reversed by losartan treatment. Cells treated with losartan also displayed an appreciable decrease of activated (phosphorylated)-Smad2/3 proteins. Moreover, Ang II treatment elevated endogenous transforming growth factor β (TGFβ) expression considerably and in an AT1R-dependent manner. Finally, exogenous TGFβ was able to restore high proliferative activity to W20-17 cells that were treated with both Ang II and losartan. Collectively, these results suggest a novel mechanism of Ang II action in bone metabolism that is mediated by TGFβ and targets proliferation of osteoblast progenitors

    S18-phosphorylation of USP7 regulates interaction with TCEAL4 that defines specific complexes and potentially distinct functions

    Get PDF
    AbstractUSP7 is a nuclear deubiquitylase (DUB) with multiple cancer-associated substrates for which selective inhibitors are available, yet it remains unclear how the pleiotropic effects of USP7 are regulated. We report that S18-phosphorylation does not influence USP7 catalytic activity but instead confers selectivity for protein interactions. In particular, non-S18-phosphorylatable USP7 preferentially interacts with USP11 and TRIM27, together with TCEAL1 and TCEAL4 whose functions are unknown. Intriguingly, USP7 can interact with two cellular forms of TCEAL4, but USP11 only interacts with a lower abundance K142 mono-ubiquitylated form (TCEAL4-Ub), which can scaffold a complex containing both DUBs. Whilst USP11 and TCEAL4 are both USP7 substrates, TCEAL4-Ub levels are specifically maintained by USP11 with their levels positively correlated in cancer cell lines. Together these data illustrate how USP7 phosphorylation and TCEAL4 ubiquitylation combine to define distinct USP7 complexes. As TCEAL4 itself interacts with proteins involved in ubiquitylation and various forms of DNA regulation, these complexes may direct cellular activity of USP7.</jats:p

    An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification.

    Get PDF
    Aims:To present an authoritative, universal, easy-to-use morphologic classification of diabetic maculopathy based on spectral domain optical coherence tomography.Methods:The first draft of the project was developed based on previously published classifications and a literature search regarding the spectral domain optical coherence tomography quantitative and qualitative features of diabetic maculopathy. This draft was sent to an international panel of retina experts for a first revision. The panel met at the European School for Advanced Studies in Ophthalmology headquarters in Lugano, Switzerland, and elaborated the final document.Results:Seven tomographic qualitative and quantitative features are taken into account and scored according to a grading protocol termed TCED-HFV, which includes foveal thickness (T), corresponding to either central subfoveal thickness or macular volume, intraretinal cysts (C), the ellipsoid zone (EZ) and/or external limiting membrane (ELM) status (E), presence of disorganization of the inner retinal layers (D), number of hyperreflective foci (H), subfoveal fluid (F), and vitreoretinal relationship (V). Four different stages of the disease, that is, early diabetic maculopathy, advanced diabetic maculopathy, severe diabetic maculopathy, and atrophic maculopathy, are based on the first four variables, namely the T, C, E, and D. The different stages reflect progressive severity of the disease.Conclusion:A novel grading system of diabetic maculopathy is hereby proposed. The classification is aimed at providing a simple, direct, objective tool to classify diabetic maculopathy (irrespective to the treatment status) even for non-retinal experts and can be used for therapeutic and prognostic purposes, as well as for correct evaluation and reproducibility of clinical investigations
    corecore