308 research outputs found

    Native defects in hybrid C/BN nanostructures

    Get PDF
    First-principles calculations of substitutional defects and vacancies are performed for zigzag-edged hybrid C/BN nanosheets and nanotubes which recently have been proposed to exhibit half-metallic properties. The formation energies show that defects form preferentially at the interfaces between graphene and BN domains rather than in the middle of these domains, and that substitutional defects dominate over vacancies. Chemical control can be used to favor localization of defects at C- B interfaces (nitrogen-rich environment) or C-N interfaces (nitrogen-poor environment). Although large defect concentrations have been considered here (106 cm-1), half-metallic properties can subsist when defects are localized at the C-B interface and for negatively charged defects localized at the C- N interface, hence the promising magnetic properties theoretically predicted for these zigzag-edged nanointerfaces might not be destroyed by point defects if these are conveniently engineered during synthesis.Comment: 6 pages, 5 figure

    Origin of half-semimetallicity induced at interfaces of C-BN heterostructures

    Get PDF
    First-principles density functional calculations are performed in C-BN heterojunctions. It is shown that the magnetism of the edge states in zigzag shaped graphene strips and polarity effects in BN strips team up to give a spin asymmetric screening that induces half-semimetallicity at the interface, with a gap of at least a few tenths of eV for one spin orientation and a tiny gap of hundredths of eV for the other. The dependence with ribbon widths is discussed, showing that a range of ribbon widths is required to obtain half-semimetallicity. These results open new routes for tuning electronic properties at nanointerfaces and exploring new physical effects similar to those observed at oxide interfaces, in lower dimensions.Comment: 4 pages, 4 figure

    ab inito local vibrational modes of light impurities in silicon

    Full text link
    We have developed a formulation of density functional perturbation theory for the calculation of vibrational frequencies in molecules and solids, which uses numerical atomic orbitals as a basis set for the electronic states. The (harmonic) dynamical matrix is extracted directly from the first order change in the density matrix with respect to infinitesimal atomic displacements from the equilibrium configuration. We have applied this method to study the vibrational properties of a number of hydrogen-related complexes and light impurities in silicon. The diagonalization of the dynamical matrix provides the vibrational modes and frequencies, including the local vibrational modes (LVMs) associated with the defects. In addition to tests on simple molecules, results for interstitial hydrogen, hydrogen dimers, vacancy-hydrogen and self-interstitial-hydrogen complexes, the boron-hydrogen pair, substitutional C, and several O-related defects in c-Si are presented. The average error relative to experiment for the aprox.60 predicted LVMs is about 2% with most highly harmonic modes being extremely close and the more anharmonic ones within 5-6% of the measured values.Comment: 18 pages, 1 figur

    Energetics of intrinsic point defects in ZrSiO4_4

    Full text link
    Using first principles calculations we have studied the formation energies, electron and hole affinities, and electronic levels of intrinsic point defects in zircon. The atomic structures of charged interstitials, vacancies, Frenkel pairs and anti-site defects are obtained. The limit of high concentration of point defects, relevant for the use of this material in nuclear waste immobilization, was studied with a variable lattice relaxation that can simulate the swelling induced by radiation damage. The limit of low concentration of defects is simulated with larger cells and fixed lattice parameters. Using known band offset values at the interface of zircon with silicon, we analyze the foreseeable effect of the defects on the electronic properties of zircon used as gate in metal-oxide-semiconductor devices.Comment: preprint 16 pages, 4 figures, and 5 table

    Ferrodistortive instability at the (001) surface of half-metallic manganites

    Full text link
    We present the structure of the fully relaxed (001) surface of the half-metallic manganite La0.7Sr0.3MnO3, calculated using density functional theory within the generalized gradient approximation (GGA). Two relevant ferroelastic order parameters are identified and characterized: The tilting of the oxygen octahedra, which is present in the bulk phase, oscillates and decreases towards the surface, and an additional ferrodistortive Mn off-centering, triggered by the surface, decays monotonically into the bulk. The narrow d-like energy band that is characteristic of unrelaxed manganite surfaces is shifted down in energy by these structural distortions, retaining its uppermost layer localization. The magnitude of the zero-temperature magnetization is unchanged from its bulk value, but the effective spin-spin interactions are reduced at the surface.Comment: 4 pages, 2 figure

    Band selection and disentanglement using maximally-localized Wannier functions: the cases of Co impurities in bulk copper and the Cu (111) surface

    Get PDF
    We have adapted the maximally-localized Wannier function approach of [I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2002)] to the density functional theory based Siesta method [J. M. Soler et al., J. Phys.: Cond. Mat. 14, 2745 (2002)] and applied it to the study of Co substitutional impurities in bulk copper as well as to the Cu (111) surface. In the Co impurity case, we have reduced the problem to the Co d-electrons and the Cu sp-band, permitting us to obtain an Anderson-like Hamiltonian from well defined density functional parameters in a fully orthonormal basis set. In order to test the quality of the Wannier approach to surfaces, we have studied the electronic structure of the Cu (111) surface by again transforming the density functional problem into the Wannier representation. An excellent description of the Shockley surface state is attained, permitting us to be confident in the application of this method to future studies of magnetic adsorbates in the presence of an extended surface state
    • …
    corecore