134 research outputs found

    KPZ equation in one dimension and line ensembles

    Full text link
    For suitably discretized versions of the Kardar-Parisi-Zhang equation in one space dimension exact scaling functions are available, amongst them the stationary two-point function. We explain one central piece from the technology through which such results are obtained, namely the method of line ensembles with purely entropic repulsion.Comment: Proceedings STATPHYS22, Bangalore, 200

    Directed diffusion of reconstituting dimers

    Get PDF
    We discuss dynamical aspects of an asymmetric version of assisted diffusion of hard core particles on a ring studied by G. I. Menon {\it et al.} in J. Stat Phys. {\bf 86}, 1237 (1997). The asymmetry brings in phenomena like kinematic waves and effects of the Kardar-Parisi-Zhang nonlinearity, which combine with the feature of strongly broken ergodicity, a characteristic of the model. A central role is played by a single nonlocal invariant, the irreducible string, whose interplay with the driven motion of reconstituting dimers, arising from the assisted hopping, determines the asymptotic dynamics and scaling regimes. These are investigated both analytically and numerically through sector-dependent mappings to the asymmetric simple exclusion process.Comment: 10 pages, 6 figures. Slight corrections, one added reference. To appear in J. Phys. Cond. Matt. (2007). Special issue on chemical kinetic

    Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP

    Get PDF
    We consider the polynuclear growth (PNG) model in 1+1 dimension with flat initial condition and no extra constraints. The joint distributions of surface height at finitely many points at a fixed time moment are given as marginals of a signed determinantal point process. The long time scaling limit of the surface height is shown to coincide with the Airy_1 process. This result holds more generally for the observation points located along any space-like path in the space-time plane. We also obtain the corresponding results for the discrete time TASEP (totally asymmetric simple exclusion process) with parallel update.Comment: 39 pages,6 figure

    Statistics of low energy excitations for the directed polymer in a 1+d1+d random medium (d=1,2,3d=1,2,3)

    Full text link
    We consider a directed polymer of length LL in a random medium of space dimension d=1,2,3d=1,2,3. The statistics of low energy excitations as a function of their size ll is numerically evaluated. These excitations can be divided into bulk and boundary excitations, with respective densities ρLbulk(E=0,l)\rho^{bulk}_L(E=0,l) and ρLboundary(E=0,l)\rho^{boundary}_L(E=0,l). We find that both densities follow the scaling behavior ρLbulk,boundary(E=0,l)=L1θdRbulk,boundary(x=l/L)\rho^{bulk,boundary}_L(E=0,l) = L^{-1-\theta_d} R^{bulk,boundary}(x=l/L), where θd\theta_d is the exponent governing the energy fluctuations at zero temperature (with the well-known exact value θ1=1/3\theta_1=1/3 in one dimension). In the limit x=l/L0x=l/L \to 0, both scaling functions Rbulk(x)R^{bulk}(x) and Rboundary(x)R^{boundary}(x) behave as Rbulk,boundary(x)x1θdR^{bulk,boundary}(x) \sim x^{-1-\theta_d}, leading to the droplet power law ρLbulk,boundary(E=0,l)l1θd\rho^{bulk,boundary}_L(E=0,l)\sim l^{-1-\theta_d} in the regime 1lL1 \ll l \ll L. Beyond their common singularity near x0x \to 0, the two scaling functions Rbulk,boundary(x)R^{bulk,boundary}(x) are very different : whereas Rbulk(x)R^{bulk}(x) decays monotonically for 0<x<10<x<1, the function Rboundary(x)R^{boundary}(x) first decays for 0<x<xmin0<x<x_{min}, then grows for xmin<x<1x_{min}<x<1, and finally presents a power law singularity Rboundary(x)(1x)σdR^{boundary}(x)\sim (1-x)^{-\sigma_d} near x1x \to 1. The density of excitations of length l=Ll=L accordingly decays as ρLboundary(E=0,l=L)Lλd\rho^{boundary}_L(E=0,l=L)\sim L^{- \lambda_d} where λd=1+θdσd\lambda_d=1+\theta_d-\sigma_d. We obtain λ10.67\lambda_1 \simeq 0.67, λ20.53\lambda_2 \simeq 0.53 and λ30.39\lambda_3 \simeq 0.39, suggesting the possible relation λd=2θd\lambda_d= 2 \theta_d.Comment: 15 pages, 25 figure

    Exact solution for the stationary Kardar-Parisi-Zhang equation

    Full text link
    We obtain the first exact solution for the stationary one-dimensional Kardar-Parisi-Zhang equation. A formula for the distribution of the height is given in terms of a Fredholm determinant, which is valid for any finite time tt. The expression is explicit and compact enough so that it can be evaluated numerically. Furthermore, by extending the same scheme, we find an exact formula for the stationary two-point correlation function.Comment: 9 pages, 3 figure

    Slow relaxation and aging kinetics for the driven lattice gas

    Full text link
    We numerically investigate the long-time behavior of the density-density auto-correlation function in driven lattice gases with particle exclusion and periodic boundary conditions in one, two, and three dimensions using precise Monte Carlo simulations. In the one-dimensional asymmetric exclusion process on a ring with half the lattice sites occupied, we find that correlations induce extremely slow relaxation to the asymptotic power law decay. We compare the crossover functions obtained from our simulations with various analytic results in the literature, and analyze the characteristic oscillations that occur in finite systems away from half-filling. As expected, in three dimensions correlations are weak and consequently the mean-field description is adequate. We also investigate the relaxation towards the nonequilibrium steady state in the two-time density-density auto-correlations, starting from strongly correlated initial conditions. We obtain simple aging scaling behavior in one, two, and three dimensions, with the expected power laws.Comment: 12 pages, 18 figures; to appear in Phys. Rev. E (2011

    Polynuclear growth model, GOE2^2 and random matrix with deterministic source

    Full text link
    We present a random matrix interpretation of the distribution functions which have appeared in the study of the one-dimensional polynuclear growth (PNG) model with external sources. It is shown that the distribution, GOE2^2, which is defined as the square of the GOE Tracy-Widom distribution, can be obtained as the scaled largest eigenvalue distribution of a special case of a random matrix model with a deterministic source, which have been studied in a different context previously. Compared to the original interpretation of the GOE2^2 as ``the square of GOE'', ours has an advantage that it can also describe the transition from the GUE Tracy-Widom distribution to the GOE2^2. We further demonstrate that our random matrix interpretation can be obtained naturally by noting the similarity of the topology between a certain non-colliding Brownian motion model and the multi-layer PNG model with an external source. This provides us with a multi-matrix model interpretation of the multi-point height distributions of the PNG model with an external source.Comment: 27pages, 4 figure

    Exact probability function for bulk density and current in the asymmetric exclusion process

    Full text link
    We examine the asymmetric simple exclusion process with open boundaries, a paradigm of driven diffusive systems, having a nonequilibrium steady state transition. We provide a full derivation and expanded discussion and digression on results previously reported briefly in M. Depken and R. Stinchcombe, Phys. Rev. Lett. {\bf 93}, 040602, (2004). In particular we derive an exact form for the joint probability function for the bulk density and current, both for finite systems, and also in the thermodynamic limit. The resulting distribution is non-Gaussian, and while the fluctuations in the current are continuous at the continuous phase transitions, the density fluctuations are discontinuous. The derivations are done by using the standard operator algebraic techniques, and by introducing a modified version of the original operator algebra. As a byproduct of these considerations we also arrive at a novel and very simple way of calculating the normalization constant appearing in the standard treatment with the operator algebra. Like the partition function in equilibrium systems, this normalization constant is shown to completely characterize the fluctuations, albeit in a very different manner.Comment: 10 pages, 4 figure

    Riemann-Hilbert approach to multi-time processes; the Airy and the Pearcey case

    Get PDF
    We prove that matrix Fredholm determinants related to multi-time processes can be expressed in terms of determinants of integrable kernels \`a la Its-Izergin-Korepin-Slavnov (IIKS) and hence related to suitable Riemann-Hilbert problems, thus extending the known results for the single-time case. We focus on the Airy and Pearcey processes. As an example of applications we re-deduce a third order PDE, found by Adler and van Moerbeke, for the two-time Airy process.Comment: 18 pages, 1 figur

    Current Distribution and random matrix ensembles for an integrable asymmetric fragmentation process

    Full text link
    We calculate the time-evolution of a discrete-time fragmentation process in which clusters of particles break up and reassemble and move stochastically with size-dependent rates. In the continuous-time limit the process turns into the totally asymmetric simple exclusion process (only pieces of size 1 break off a given cluster). We express the exact solution of master equation for the process in terms of a determinant which can be derived using the Bethe ansatz. From this determinant we compute the distribution of the current across an arbitrary bond which after appropriate scaling is given by the distribution of the largest eigenvalue of the Gaussian unitary ensemble of random matrices. This result confirms universality of the scaling form of the current distribution in the KPZ universality class and suggests that there is a link between integrable particle systems and random matrix ensembles.Comment: 11 page
    corecore