research

Statistics of low energy excitations for the directed polymer in a 1+d1+d random medium (d=1,2,3d=1,2,3)

Abstract

We consider a directed polymer of length LL in a random medium of space dimension d=1,2,3d=1,2,3. The statistics of low energy excitations as a function of their size ll is numerically evaluated. These excitations can be divided into bulk and boundary excitations, with respective densities ρLbulk(E=0,l)\rho^{bulk}_L(E=0,l) and ρLboundary(E=0,l)\rho^{boundary}_L(E=0,l). We find that both densities follow the scaling behavior ρLbulk,boundary(E=0,l)=L1θdRbulk,boundary(x=l/L)\rho^{bulk,boundary}_L(E=0,l) = L^{-1-\theta_d} R^{bulk,boundary}(x=l/L), where θd\theta_d is the exponent governing the energy fluctuations at zero temperature (with the well-known exact value θ1=1/3\theta_1=1/3 in one dimension). In the limit x=l/L0x=l/L \to 0, both scaling functions Rbulk(x)R^{bulk}(x) and Rboundary(x)R^{boundary}(x) behave as Rbulk,boundary(x)x1θdR^{bulk,boundary}(x) \sim x^{-1-\theta_d}, leading to the droplet power law ρLbulk,boundary(E=0,l)l1θd\rho^{bulk,boundary}_L(E=0,l)\sim l^{-1-\theta_d} in the regime 1lL1 \ll l \ll L. Beyond their common singularity near x0x \to 0, the two scaling functions Rbulk,boundary(x)R^{bulk,boundary}(x) are very different : whereas Rbulk(x)R^{bulk}(x) decays monotonically for 0<x<10<x<1, the function Rboundary(x)R^{boundary}(x) first decays for 0<x<xmin0<x<x_{min}, then grows for xmin<x<1x_{min}<x<1, and finally presents a power law singularity Rboundary(x)(1x)σdR^{boundary}(x)\sim (1-x)^{-\sigma_d} near x1x \to 1. The density of excitations of length l=Ll=L accordingly decays as ρLboundary(E=0,l=L)Lλd\rho^{boundary}_L(E=0,l=L)\sim L^{- \lambda_d} where λd=1+θdσd\lambda_d=1+\theta_d-\sigma_d. We obtain λ10.67\lambda_1 \simeq 0.67, λ20.53\lambda_2 \simeq 0.53 and λ30.39\lambda_3 \simeq 0.39, suggesting the possible relation λd=2θd\lambda_d= 2 \theta_d.Comment: 15 pages, 25 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/04/2023
    Last time updated on 01/04/2019