104 research outputs found

    Operator *-correspondences in analysis and geometry

    Full text link
    An operator *-algebra is a non-selfadjoint operator algebra with completely isometric involution. We show that any operator *-algebra admits a faithful representation on a Hilbert space in such a way that the involution coincides with the operator adjoint up to conjugation by a symmetry. We introduce operator *-correspondences as a general class of inner product modules over operator *-algebras and prove a similar representation theorem for them. From this we derive the existence of linking operator *-algebras for operator *-correspondences. We illustrate the relevance of this class of inner product modules by providing numerous examples arising from noncommutative geometry.Comment: 31 pages. This work originated from the MFO workshop "Operator spaces and noncommutative geometry in interaction

    Levinson's theorem and higher degree traces for Aharonov-Bohm operators

    Full text link
    We study Levinson type theorems for the family of Aharonov-Bohm models from different perspectives. The first one is purely analytical involving the explicit calculation of the wave-operators and allowing to determine precisely the various contributions to the left hand side of Levinson's theorem, namely those due to the scattering operator, the terms at 0-energy and at infinite energy. The second one is based on non-commutative topology revealing the topological nature of Levinson's theorem. We then include the parameters of the family into the topological description obtaining a new type of Levinson's theorem, a higher degree Levinson's theorem. In this context, the Chern number of a bundle defined by a family of projections on bound states is explicitly computed and related to the result of a 3-trace applied on the scattering part of the model.Comment: 33 page

    Exploration of finite dimensional Kac algebras and lattices of intermediate subfactors of irreducible inclusions

    Full text link
    We study the four infinite families KA(n), KB(n), KD(n), KQ(n) of finite dimensional Hopf (in fact Kac) algebras constructed respectively by A. Masuoka and L. Vainerman: isomorphisms, automorphism groups, self-duality, lattices of coideal subalgebras. We reduce the study to KD(n) by proving that the others are isomorphic to KD(n), its dual, or an index 2 subalgebra of KD(2n). We derive many examples of lattices of intermediate subfactors of the inclusions of depth 2 associated to those Kac algebras, as well as the corresponding principal graphs, which is the original motivation. Along the way, we extend some general results on the Galois correspondence for depth 2 inclusions, and develop some tools and algorithms for the study of twisted group algebras and their lattices of coideal subalgebras. This research was driven by heavy computer exploration, whose tools and methodology we further describe.Comment: v1: 84 pages, 13 figures, submitted. v2: 94 pages, 15 figures, added connections with Masuoka's families KA and KB, description of K3 in KD(n), lattices for KD(8) and KD(15). v3: 93 pages, 15 figures, proven lattice for KD(6), misc improvements, accepted for publication in Journal of Algebra and Its Application

    The Algebras of Large N Matrix Mechanics

    Get PDF
    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.Comment: 70 pages, expanded historical remark

    Weak Riemannian manifolds from finite index subfactors

    Get PDF
    Let N⊂MN\subset M be a finite Jones' index inclusion of II1_1 factors, and denote by UN⊂UMU_N\subset U_M their unitary groups. In this paper we study the homogeneous space UM/UNU_M/U_N, which is a (infinite dimensional) differentiable manifold, diffeomorphic to the orbit O(p)={upu∗:u∈UM} {\cal O}(p) =\{u p u^*: u\in U_M\} of the Jones projection pp of the inclusion. We endow O(p){\cal O}(p) with a Riemannian metric, by means of the trace on each tangent space. These are pre-Hilbert spaces (the tangent spaces are not complete), therefore O(p){\cal O}(p) is a weak Riemannian manifold. We show that O(p){\cal O}(p) enjoys certain properties similar to classic Hilbert-Riemann manifolds. Among them, metric completeness of the geodesic distance, uniqueness of geodesics of the Levi-Civita connection as minimal curves, and partial results on the existence of minimal geodesics. For instance, around each point p1p_1 of O(p){\cal O}(p), there is a ball {q∈O(p):∥q−p1∥<r}\{q\in {\cal O}(p):\|q-p_1\|<r\} (of uniform radius rr) of the usual norm of MM, such that any point p2p_2 in the ball is joined to p1p_1 by a unique geodesic, which is shorter than any other piecewise smooth curve lying inside this ball. We also give an intrinsic (algebraic) characterization of the directions of degeneracy of the submanifold inclusion O(p)⊂P(M1){\cal O}(p)\subset {\cal P}(M_1), where the last set denotes the Grassmann manifold of the von Neumann algebra generated by MM and pp.Comment: 19 page

    Gravity coupled with matter and foundation of non-commutative geometry

    Full text link
    We first exhibit in the commutative case the simple algebraic relations between the algebra of functions on a manifold and its infinitesimal length element dsds. Its unitary representations correspond to Riemannian metrics and Spin structure while dsds is the Dirac propagator ds = \ts \!\!---\!\! \ts = D^{-1} where DD is the Dirac operator. We extend these simple relations to the non commutative case using Tomita's involution JJ. We then write a spectral action, the trace of a function of the length element in Planck units, which when applied to the non commutative geometry of the Standard Model will be shown (in a joint work with Ali Chamseddine) to give the SM Lagrangian coupled to gravity. The internal fluctuations of the non commutative geometry are trivial in the commutative case but yield the full bosonic sector of SM with all correct quantum numbers in the slightly non commutative case. The group of local gauge transformations appears spontaneously as a normal subgroup of the diffeomorphism group.Comment: 30 pages, Plain Te

    Simultaneous quantization of edge and bulk Hall conductivity

    Full text link
    The edge Hall conductivity is shown to be an integer multiple of e2/he^2/h which is almost surely independent of the choice of the disordered configuration. Its equality to the bulk Hall conductivity given by the Kubo-Chern formula follows from K-theoretic arguments. This leads to quantization of the Hall conductance for any redistribution of the current in the sample. It is argued that in experiments at most a few percent of the total current can be carried by edge states.Comment: 6 pages Latex, 1 figur

    The K-theory of free quantum groups

    Get PDF
    In this paper we study the K -theory of free quantum groups in the sense of Wang and Van Daele, more precisely, of free products of free unitary and free orthogonal quantum groups. We show that these quantum groups are K -amenable and establish an analogue of the Pimsner–Voiculescu exact sequence. As a consequence, we obtain in particular an explicit computation of the K -theory of free quantum groups. Our approach relies on a generalization of methods from the Baum–Connes conjecture to the framework of discrete quantum groups. This is based on the categorical reformulation of the Baum–Connes conjecture developed by Meyer and Nest. As a main result we show that free quantum groups have a γ -element and that γ=1 . As an important ingredient in the proof we adapt the Dirac-dual Dirac method for groups acting on trees to the quantum case. We use this to extend some permanence properties of the Baum–Connes conjecture to our setting

    Tachyon Condensation on Noncommutative Torus

    Full text link
    We discuss noncommutative solitons on a noncommutative torus and their application to tachyon condensation. In the large B limit, they can be exactly described by the Powers-Rieffel projection operators known in the mathematical literature. The resulting soliton spectrum is consistent with T-duality and is surprisingly interesting. It is shown that an instability arises for any D-branes, leading to the decay into many smaller D-branes. This phenomenon is the consequence of the fact that K-homology for type II von Neumann factor is labeled by R.Comment: LaTeX, 17 pages, 1 figur

    C*-algebras associated with endomorphisms and polymorphisms of compact abelian groups

    Full text link
    A surjective endomorphism or, more generally, a polymorphism in the sense of \cite{SV}, of a compact abelian group HH induces a transformation of L2(H)L^2(H). We study the C*-algebra generated by this operator together with the algebra of continuous functions C(H)C(H) which acts as multiplication operators on L2(H)L^2(H). Under a natural condition on the endo- or polymorphism, this algebra is simple and can be described by generators and relations. In the case of an endomorphism it is always purely infinite, while for a polymorphism in the class we consider, it is either purely infinite or has a unique trace. We prove a formula allowing to determine the KK-theory of these algebras and use it to compute the KK-groups in a number of interesting examples.Comment: 25 page
    • …
    corecore