104 research outputs found
Operator *-correspondences in analysis and geometry
An operator *-algebra is a non-selfadjoint operator algebra with completely
isometric involution. We show that any operator *-algebra admits a faithful
representation on a Hilbert space in such a way that the involution coincides
with the operator adjoint up to conjugation by a symmetry. We introduce
operator *-correspondences as a general class of inner product modules over
operator *-algebras and prove a similar representation theorem for them. From
this we derive the existence of linking operator *-algebras for operator
*-correspondences. We illustrate the relevance of this class of inner product
modules by providing numerous examples arising from noncommutative geometry.Comment: 31 pages. This work originated from the MFO workshop "Operator spaces
and noncommutative geometry in interaction
Levinson's theorem and higher degree traces for Aharonov-Bohm operators
We study Levinson type theorems for the family of Aharonov-Bohm models from
different perspectives. The first one is purely analytical involving the
explicit calculation of the wave-operators and allowing to determine precisely
the various contributions to the left hand side of Levinson's theorem, namely
those due to the scattering operator, the terms at 0-energy and at infinite
energy. The second one is based on non-commutative topology revealing the
topological nature of Levinson's theorem. We then include the parameters of the
family into the topological description obtaining a new type of Levinson's
theorem, a higher degree Levinson's theorem. In this context, the Chern number
of a bundle defined by a family of projections on bound states is explicitly
computed and related to the result of a 3-trace applied on the scattering part
of the model.Comment: 33 page
Exploration of finite dimensional Kac algebras and lattices of intermediate subfactors of irreducible inclusions
We study the four infinite families KA(n), KB(n), KD(n), KQ(n) of finite
dimensional Hopf (in fact Kac) algebras constructed respectively by A. Masuoka
and L. Vainerman: isomorphisms, automorphism groups, self-duality, lattices of
coideal subalgebras. We reduce the study to KD(n) by proving that the others
are isomorphic to KD(n), its dual, or an index 2 subalgebra of KD(2n). We
derive many examples of lattices of intermediate subfactors of the inclusions
of depth 2 associated to those Kac algebras, as well as the corresponding
principal graphs, which is the original motivation.
Along the way, we extend some general results on the Galois correspondence
for depth 2 inclusions, and develop some tools and algorithms for the study of
twisted group algebras and their lattices of coideal subalgebras. This research
was driven by heavy computer exploration, whose tools and methodology we
further describe.Comment: v1: 84 pages, 13 figures, submitted. v2: 94 pages, 15 figures, added
connections with Masuoka's families KA and KB, description of K3 in KD(n),
lattices for KD(8) and KD(15). v3: 93 pages, 15 figures, proven lattice for
KD(6), misc improvements, accepted for publication in Journal of Algebra and
Its Application
The Algebras of Large N Matrix Mechanics
Extending early work, we formulate the large N matrix mechanics of general
bosonic, fermionic and supersymmetric matrix models, including Matrix theory:
The Hamiltonian framework of large N matrix mechanics provides a natural
setting in which to study the algebras of the large N limit, including
(reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We
find in particular a broad array of new free algebras which we call symmetric
Cuntz algebras, interacting symmetric Cuntz algebras, symmetric
Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the
role of these algebras in solving the large N theory. Most important, the
interacting Cuntz algebras are associated to a set of new (hidden) local
quantities which are generically conserved only at large N. A number of other
new large N phenomena are also observed, including the intrinsic nonlocality of
the (reduced) trace class operators of the theory and a closely related large N
field identification phenomenon which is associated to another set (this time
nonlocal) of new conserved quantities at large N.Comment: 70 pages, expanded historical remark
Weak Riemannian manifolds from finite index subfactors
Let be a finite Jones' index inclusion of II factors, and
denote by their unitary groups. In this paper we study the
homogeneous space , which is a (infinite dimensional) differentiable
manifold, diffeomorphic to the orbit
of the Jones projection of the inclusion. We endow with a
Riemannian metric, by means of the trace on each tangent space. These are
pre-Hilbert spaces (the tangent spaces are not complete), therefore is a weak Riemannian manifold. We show that enjoys certain
properties similar to classic Hilbert-Riemann manifolds. Among them, metric
completeness of the geodesic distance, uniqueness of geodesics of the
Levi-Civita connection as minimal curves, and partial results on the existence
of minimal geodesics. For instance, around each point of ,
there is a ball (of uniform radius ) of
the usual norm of , such that any point in the ball is joined to
by a unique geodesic, which is shorter than any other piecewise smooth curve
lying inside this ball. We also give an intrinsic (algebraic) characterization
of the directions of degeneracy of the submanifold inclusion , where the last set denotes the Grassmann manifold
of the von Neumann algebra generated by and .Comment: 19 page
Gravity coupled with matter and foundation of non-commutative geometry
We first exhibit in the commutative case the simple algebraic relations
between the algebra of functions on a manifold and its infinitesimal length
element . Its unitary representations correspond to Riemannian metrics and
Spin structure while is the Dirac propagator ds = \ts \!\!---\!\! \ts =
D^{-1} where is the Dirac operator. We extend these simple relations to
the non commutative case using Tomita's involution . We then write a
spectral action, the trace of a function of the length element in Planck units,
which when applied to the non commutative geometry of the Standard Model will
be shown (in a joint work with Ali Chamseddine) to give the SM Lagrangian
coupled to gravity. The internal fluctuations of the non commutative geometry
are trivial in the commutative case but yield the full bosonic sector of SM
with all correct quantum numbers in the slightly non commutative case. The
group of local gauge transformations appears spontaneously as a normal subgroup
of the diffeomorphism group.Comment: 30 pages, Plain Te
Simultaneous quantization of edge and bulk Hall conductivity
The edge Hall conductivity is shown to be an integer multiple of
which is almost surely independent of the choice of the disordered
configuration. Its equality to the bulk Hall conductivity given by the
Kubo-Chern formula follows from K-theoretic arguments. This leads to
quantization of the Hall conductance for any redistribution of the current in
the sample. It is argued that in experiments at most a few percent of the total
current can be carried by edge states.Comment: 6 pages Latex, 1 figur
The K-theory of free quantum groups
In this paper we study the K -theory of free quantum groups in the sense of Wang and Van Daele, more precisely, of free products of free unitary and free orthogonal quantum groups. We show that these quantum groups are K -amenable and establish an analogue of the Pimsner–Voiculescu exact sequence. As a consequence, we obtain in particular an explicit computation of the K -theory of free quantum groups. Our approach relies on a generalization of methods from the Baum–Connes conjecture to the framework of discrete quantum groups. This is based on the categorical reformulation of the Baum–Connes conjecture developed by Meyer and Nest. As a main result we show that free quantum groups have a γ -element and that γ=1 . As an important ingredient in the proof we adapt the Dirac-dual Dirac method for groups acting on trees to the quantum case. We use this to extend some permanence properties of the Baum–Connes conjecture to our setting
Tachyon Condensation on Noncommutative Torus
We discuss noncommutative solitons on a noncommutative torus and their
application to tachyon condensation. In the large B limit, they can be exactly
described by the Powers-Rieffel projection operators known in the mathematical
literature. The resulting soliton spectrum is consistent with T-duality and is
surprisingly interesting. It is shown that an instability arises for any
D-branes, leading to the decay into many smaller D-branes. This phenomenon is
the consequence of the fact that K-homology for type II von Neumann factor is
labeled by R.Comment: LaTeX, 17 pages, 1 figur
C*-algebras associated with endomorphisms and polymorphisms of compact abelian groups
A surjective endomorphism or, more generally, a polymorphism in the sense of
\cite{SV}, of a compact abelian group induces a transformation of .
We study the C*-algebra generated by this operator together with the algebra of
continuous functions which acts as multiplication operators on .
Under a natural condition on the endo- or polymorphism, this algebra is simple
and can be described by generators and relations. In the case of an
endomorphism it is always purely infinite, while for a polymorphism in the
class we consider, it is either purely infinite or has a unique trace. We prove
a formula allowing to determine the -theory of these algebras and use it to
compute the -groups in a number of interesting examples.Comment: 25 page
- …