714 research outputs found

    Electromagnetic field observations by the DEMETER satellite in connection with the 2009 L'Aquila earthquake

    Get PDF
    Abstract. To define a background in the electromagnetic emissions above seismic regions, it is necessary to define the statistical distribution of the wave energy in the absence of seismic activity and any other anomalous input (e.g. solar forcing). This paper presents a completely new method to determine both the environmental and instrumental backgrounds applied to the entire DEMETER satellite electric and magnetic field data over L'Aquila. Our technique is based on a new data analysis tool called ALIF (adaptive local iterative filtering, Cicone et al., 2016; Cicone and Zhou, 2017; Piersanti et al., 2017b). To evaluate the instrumental background, we performed a multiscale statistical analysis in which the instantaneous relative energy (ϵrel), kurtosis, and Shannon entropy were calculated. To estimate the environmental background, a map, divided into 1∘×1∘ latitude–longitude cells, of the averaged relative energy (ϵrel‾), has been constructed, taking into account the geomagnetic activity conditions, the presence of seismic activity, and the local time sector of the satellite orbit. Any distinct signal different (over a certain threshold) from both the instrumental and environmental backgrounds will be considered as a case event to be investigated. Interestingly, on 4 April 2009, when DEMETER flew exactly over L'Aquila at UT = 20:29, an anomalous signal was observed at 333 Hz on both the electric and magnetic field data, whose characteristics seem to be related to pre-seismic activity

    Sudden Impulses in the Magnetosphere and at Ground

    Get PDF

    Transient deformations in the Suez-Sinai area from GPS observations

    Full text link
    We analyze data from four GPS campaigns carried out between 1997 and 2002 on a network of 11 sites in the Suez-Sinai, the area of collision between the African and the Arabian plates. This is the key area to understand how and in which way Sinai behaves like a sub-plate of the African plate and the role played between seismic and geodetic (long term) deformation release. Our analysis shows that, on average, the Suez-Sinai area motion (in terms of ITRF00 velocities) matches African plate motion (NNR-NUVEL-1A model). However, the baseline length variations show transient deformations in Sinai and across the Gulf of Suez, reaching up a maximum value of about 1.5 cm in five years. Since current geodynamical models do not predict significant tectonic deformation in this area, we worked under the hypothesis that a contribute may be due to post-seismic relaxation. Under this hypothesis, we compared the baselines length variations with the post-seismic relaxation field associated with five major local earthquakes occurred in the area, testing two different viscoelastic models. Our results show that the transient deformations are better modelled for viscosity values of 1018 Pa s in the lower crust and 1020 Pa s in the asthenosphere. However, since the modelled post-seismic effect results modest and a certain amount of the detected deformation is not accounted for, we think that an improved modelling should take into account the lateral heterogeneities of crust and upper mantle structures

    The Influence of N14(e-,nu)C14(alpha,gamma)O18 reaction on the He-Ignition in Degenerate Physical Conditions

    Full text link
    The importance of NCO chain on the onset of the He-flash in degenerate physical conditions has been reevaluated. We find that low-mass, metal-rich (Z ≥\ge 0.001) structures climbing the Red Giant Branch do never attain the physical conditions suitable for the onset of this chain, while at lower metallicities the energy contribution provided by NCO reaction is too low to affect the onset of the central He-flash. At the same time, our evolutionary models suggest that for a Carbon-Oxygen White Dwarf of mass M_{WD}=0.6 M_sun accreting He-rich matter, directly or as a by-product of an overlying H-burning shell, at rates suitable for a dynamical He-flash, the NCO energy contribution is not able to keep hot enough the He-shell and in turn to avoid the occurrence of a strong electron degeneracy and the ensuing final explosion.Comment: 15 pages, 3 tables, 10 figure, to appear in Ap

    Effect of Frequency and Intensity of Defoliation on Oat- Vetch Mixture

    Get PDF
    An experiment was conducted to evaluate the effect of different cutting regimes on productivity and complementarity between oat and vetch in a mixture. The treatments were allocated in a factorial design on a split-split-plot disposition: they were 3 cutting frequencies (each 35, 70 and 105 days), 3 cutting heights (2, 8 and 14 cm above ground) and 3 crops (oat, vetch and the 1:1 mixture). Forage production (dry matter per hectare) and complementarity between species Relative Yield Total (RYT) were evaluated. The highest forage production (p- 0.05) was obtained with a cutting height of 2 cm and a frequency of 70 days, both in mixture and pure crops. Mixture production was significantly higher than pure stands (p- 0.01) and RYT was higher than unity (p- 0.01) under all defoliation regimens. Defoliation treatments did not modify RYT. In these experimental conditions, cutting frequency and cutting height affected forage production but did not modify complementarity between species

    FEMSA: A finite element simulation tool for quasi-static seismic deformation

    Get PDF
    Modeling postseismic deformation is an increasingly valuable tool in earthquake seismology. In particular, the Finite Element (FE) numerical method allows accurate modeling of complex faulting geometry, inhomogeneous materials and realistic viscous flow, appearing an excellent tool to investigate a lot of specific phenomena related with earthquakes

    The effects of a revised 7^7Be e−^--capture rate on solar neutrino fluxes

    Get PDF
    The electron-capture rate on 7^7Be is the main production channel for 7^7Li in several astrophysical environments. Theoretical evaluations have to account for not only the nuclear interaction, but also the processes in the plasma where 7^7Be ions and electrons interact. In the past decades several estimates were presented, pointing out that the theoretical uncertainty in the rate is in general of few percents. In the framework of fundamental solar physics, we consider here a recent evaluation for the 7^7Be+e−^- rate, not used up to now in the estimate of neutrino fluxes. We analysed the effects of the new assumptions on Standard Solar Models (SSMs) and compared the results obtained by adopting the revised 7^7Be+e−^- rate to those obtained by the one reported in a widely used compilation of reaction rates (ADE11). We found that new SSMs yield a maximum difference in the efficiency of the 7^7Be channel of about -4\% with respect to what is obtained with the previously adopted rate. This fact affects the production of neutrinos from 8^8B, increasing the relative flux up to a maximum of 2.7\%. Negligible variations are found for the physical and chemical properties of the computed solar models. The agreement with the SNO measurements of the neutral current component of the 8^8B neutrino flux is improved.Comment: 7 pages, 3 figures, 4 tables. Accepted for the publication on A&

    FEMSA: a finite element simulation tool for quasi-static seismic deformation modeling

    Get PDF
    We set up a computational tool to numerically model static and quasi-static deformation generated by faulting sources embedded in plane or spherical domains. We use a Finite Element (FE) approach to automatically implement arbitrary faulting sources and calculate displacement and stress fields induced by slip on the fault. The package makes use of the capabilities of CalculiX, a non commercial FE software designed to solve field problems (see <http://www.calculix.de> for details), and is freely distributed by request

    Finite Element Modeling of the 2004 giant Sumatra Earthquake Postseismic Displacement Field

    Get PDF
    The 26 December 2004 Sumatra-Andaman earthquake is one of the largest earthquakes ever recorded since 1900. The earthquake resulted from complex slip on the fault where the oceanic portion of the Indian Plate slides under the Eurasian Plate, by the Indonesian Island of Sumatra. The particular features of the detected quasi-static displacement field has been previously attributed to the heterogeneous distribution of moment release on the fault plane. In the present work, we use a new computational FEM strategy to model the co- and postseismic displacement field associated with the Sumatra earthquake. For the first time we can study the joint effects of sphericity and 3D mechanical and rheological heterogeneities on the investigated observables. The comparison between our synthetic results and the available deformation data allows us to ascertain if also lateral heterogeneities in the physical properties of the medium could have played a role in assessing the deformation field

    Trade--Off Between Seismic Source Detail and Crustal Heterogeneities in Spherical 3D Finite Element Modeling: the 2004 Sumatra Earthquake case-study

    Get PDF
    Finite Element methods (FEMs) are a powerful numerical simulation tool for modeling seismic events as they allow to solve three-dimensional complex models. We used a 3D Finite Element approach to evaluate the co-seismic displacement eld produced by the devastating 2004 Sumatra Andaman earthquake, which caused permanent deformations recorded by continuously operating GPS networks in a region of unprecedented extent. Previous analysis of the static displacement fi eld focused on the heterogeneous distribution of moment release on the fault plane; our intention here is to investigate how much the presence of crustal heterogeneities trades off seismic source details. To this aim, we adopted a quite simple source model in modeling the event. The key feature of our analysis is the generation of a complex three dimensional spherical domain. More-over, we also made an accurate analysis concerning boundary conditions, which are crucial for FE simulations
    • …
    corecore