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Abstract

We set up a computational tool to numerically model static and quasi-static deformation generated by faulting
sources embedded in plane or spherical domains. We use a Finite Element (FE) approach to automatically im-
plement arbitrary faulting sources and calculate displacement and stress fields induced by slip on the fault. The
package makes use of the capabilities of CalculiX, a non commercial FE software designed to solve field prob-
lems (see <http://www.calculix.de> for details), and is freely distributed by request.
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finite element method PACS: 91.30.Bi, 91.55.Jk,
91.30.Ab, 02.70.Dh

1. Introduction

Earthquakes are generated by abrupt mo-
tions along a fault plane. The Earth, behaving
like a (nearly) elastic body, instantaneously re-
acts to the fault dislocation and generates elas-
tic waves as a result of the transient stress im-
balance in the rock. Since the dislocation is per-
manent, seismic waves decay to a residual stat-
ic offset called coseismic deformation. Model-
ing stress and displacement fields resulting
from seismic faulting is an increasingly valu-
able tool in earthquake seismology. The
progress in geodetic techniques such as GPS
and SAR has made available high precision co-
and post-seismic displacement measurements,
which have been employed, for instance, in the
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inversion of the seismic source structure (Ar-
nadéttir et al., 2005; Banerjee et al., 2005; Sav-
age et al., 2005).

In the last two decades, many different ap-
proaches have been proposed to study the static
and quasi-static deformation associated with a
seismic event. On the one hand, although analyt-
ical and semi-analytical models (Okada, 1985,
1992; Rybicki, 1986; Roth, 1990, 1993; Hudnut
et al., 1996; Sagiya and Thatcher, 1999) are of-
ten very accurate and simple to implement, they
suffer from a limited flexibility, as they give very
little opportunity to account for geometrical
and/or rheological complexities. Starting from
the 1990’s, most studies focused on deriving an-
alytical formulations of elastic dislocations in a
layered half-space or spherical domain, possibly
including rheological layering (Ma and Kusznir,
1992, 1994; Pollitz, 1992; Piersanti et al., 1995,
1997; Savage, 1998; Bonafede et al., 2002; Ri-
valta et al., 2002). In some cases, formulae
were derived for certain types of faulting or for
certain types of displacements only. Some of
the models are difficult to use and have only a
theoretical interest. Moreover, the effects of
crustal rigidity layering and the lateral variations
of rheological properties are not accounted in all
of the semi-analytical analyses associated with
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faulting, because they lead to mathematical
problems which cannot be solved analytically.
On the other hand, purely numerical models
have been developed to overcome restrictions
and improve performances with respect to ana-
Iytical techniques, but in some cases they also
result unable to model all the significant features
or geometric complexities of interest e.g., Meg-
na et al. (2005). Among numerical methods,
however, Finite Element (FE) modeling in three
dimensions allows accurate modeling of com-
plex faulting geometry, inhomogeneous materi-
als and realistic viscous flow, appearing an ex-
cellent tool to investigate many specific phe-
nomena related with earthquakes. Unfortunate-
ly, at present FE analyses are mostly based on
commercial or in-house codes, which in fact in-

volve other practical disadvantages since they
are both hardly accessible to the whole scientif-
ic community for different reasons. Commercial
codes have often prohibitive prices and are not
very easy to handle because of the difficulty of
going into their real working, as well as for the
actual lack of any user-code interaction. More-
over, most commercial codes are aimed at in-
dustrial design problems and their adaptation to
geophysical problems is not straightforward
(Wu, 2004). In-house codes, in several cases,
turn out to be easily understandable and usable
just by their developers and are often designed
for specific problems, resulting hardly extend-
able to more general cases. Furthermore, they
are not particularly robust with respect to errors
or inaccuracies, as they are often based on ad
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Fig. 1a,b. a) Perspective and b) top view of the domain: the central volume is the core region.
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hoc made FEM solvers that are actually not
widely used and tested.

The aim of the present work is to set up and
test a flexible, versatile, robust and reliable nu-
merical method to investigate crustal deforma-
tion produced by complex rupture along disloca-
tions. The main goal is to achieve a simulation
tool which is easy to implement and handle and
especially based on widely used (i.e. not only in
geophysics) but non commercial packages. To
this purpose, we make use of a free three-dimen-
sional FE software, CalculiX (v. 1.5), distributed
under the terms of the GNU General Public Li-
cense (see <http://www.calculix.de> for down-
loading). The CalculiX package is widely used
among the scientific community for a great vari-
ety of applications and provides both the mesher
and the solver to set up and solve the FE model.
Auxiliary codes have been developed to work as
appropriate interfaces to the software. The tool
has been called FEMSA, that is the acronym for
«Finite Element Modeling for Seismic Applica-
tions», and it is freely distributed by request (e-
mail to volpe@ingv.it). A user manual with tuto-
rial enclosed is also available.

The paper is organized as follows: in Section
2 we present the capabilities of CalculiX and its
key features; in Section 3 we discuss our ap-
proach and give some additional theoretical and
computational details concerning the FE model;
in Section 4 we exhibit a series of benchmark
simulations performed on an homogeneous test
domain (see fig. la,b) in order to validate the
model and check the functionality and flexibility
of our approach; finally in Section 5, just to illus-
trate some potentialities of FEMSA, we investi-
gate few preliminary applications on a simple
rheologically heterogeneous model, representing
a border zone between the oceanic and the conti-
nental crust, and on a real earthquake fault, name-
ly the 2004 Sumatra earthquake. Concluding re-
marks are summarized in Section 6.

2. The CalculiX package

CalculiX is a package designed to solve field
problems by means of the FE method. The copy-
right (1998) belongs to Guido Dhondt and Klaus
Wittig (<http://www.calculix.de>). A useful ex-

change forum to share experiences, bring forward
problems and discuss improvements is available
at the web site <http://groups.yahoo.com/group/
calculix>. In the following, the main features of
CalculiX will be briefly described. For more de-
tails the reader is referred to the specific docu-
mentation.

With CalculiX, FE models can be built, calcu-
lated and post-processed. Naming conventions
and input style formats for CalculiX are based on
those used by ABAQUS, a proprietary, general
purpose finite element code developed and sup-
ported by Hibbitt, Karlsson & Sorensen, Inc.
(HKS) (see <http://www.abaqus.com> for de-
tails). Table I summarizes some of the most com-
monly used element types.

The pre- and post-processor (CalculiX
GraphiX: cgx) is an interactive 3D graphical in-
terface using the OpenGL library for visualiza-
tion and the GLUT library for window manage-
ment and event handling. The cgx creates a
structured mesh based on a description of its
geometry and is able to generate and display

Table I. Brief summary of element types supported
by CalculiX GraphiX and CrunchiX. Two stars in the
CGX column mean that the mesher is able both to
create and to display the element; one star means it
can only display.

Element Interpolating CGX CCX
function
2-node linear *
Beam
3-node quadratic %% %X
4-node linear * %
Shell
8-node quadratic kX X
8-node linear *
Brick
20-node  quadratic * *
4-node linear *
Tetrahedral
10-node  quadratic * *
6-node linear *
Wedge
15-node  quadratic * *
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beam, shell and brick elements in linear and
quadratic form, while it can display, but not cre-
ate, penta- and tetrahedral-elements. In addition,
it supports common CAD formats. After the
mesh is created it must be written to a file to be
available for the solver. Results can be visualized
by calling the cgx program again in an independ-
ent session. The post-processor functionality is
mainly controlled by a pop-up menu, while the
pre-processor functionality is controlled by the
keyboard.

The solver (CalculiX CrunchiX: ccx) is able
to perform linear and non-linear calculations on
beam, shell, brick, tetrahedral and wedge ele-
ments. Each element in the structure must have
a material assigned, with specific linear or non-
linear mechanical properties. Static, dynamic
and thermal solutions are available. A ccx input
deck basically consists of a model definition
section describing the geometry and boundary
conditions of the problem and one or more
steps defining the forcing terms. As far as the
theory behind ccx is concerned, the reader is re-
ferred to Dhondt (2004) and Cook et al. (2002).

Both programs can be used independently.
Since the solver makes use of the Abaqus input
format, it is possible to use other pre-processors
as well. In turn, the pre-processor is able to
write mesh related data for Nastran, Abaqus,
Ansys, Code-Aster and for the free-cfd codes
duns, ISAAC and OpenFOAM. The package
can run on Unix and MS-Windows platforms.

3. The simulation method

Our approach basically consists in exploit-
ing CalculiX capabilities and building interface
codes to investigate postseismic deformation
produced by dislocations within plane or spher-
ical domains by means of a three dimensional
FE modeling. In other words, the goal is to de-
velop a numerical tool to automatically imple-
ment arbitrary faulting sources and perform
static and quasi-static calculations to compute
the horizontal and vertical displacement and
stress fields induced by the fault slip. A refer-
ence analytical solution obtained with the Oka-
da model (Okada, 1985, 1992) can be automat-
ically provided for comparison.
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In FE modeling, faults are commonly con-
sidered like contact interfaces between de-
formable bodies with stick and finite frictional
slip (Xing and Makinouchi, 2000, 2002; Cia-
netti et al., 2005), i.e. by a pair of surfaces
whose nodes are connected by contact elements
preventing copenetration of the deformable sur-
faces. During fault slip, these elements are able
to account for frictional properties if a suitable
friction law relating tractions to slip, slip rate or
other fault state variables is given.

So far, CalculiX contact capabilities are not
suitable for our aims, but such a restriction can
be overcome by introducing an alternate ap-
proach based on the equivalent body force theo-
rem. In fact, it is well known that seismic sources
can be mathematically described by means of
dynamically equivalent force systems replacing
the actual process (Burridge and Knopoff, 1964).
The displacement field produced by a fault dislo-
cation is equivalent to the one associated with a
distribution of double couples of forces placed in
an unfracturated medium. Since coseismic de-
formations decay rapidly with distance from the
source, most modeling involves vertical and hor-
izontal ground displacements observed near the
fault. Consequently, a point source approxima-
tion is not valid and a finite fault with a numeri-
cally discretized distribution of double couples is
needed (Piersanti et al., 1997). This approach
binds us to handle planar or quasi-planar fault
surfaces, but such a limit is likely to be overcome
as far as frictional contact elements will be im-
plemented in CalculiX.

The fault plane, represented by an appropri-
ate planar distribution of double couples simu-
lating either a strike or a dip slip, is generated
by means of a Fortran interface, which also at-
tends to define the force field. Basically, nodes
in groups of four, corresponding to force appli-
cation points, are suitably picked according to
the slip vector and, if needed, moved in order to
obtain the correct orientation depending on the
dip angle (0). For the sake of symmetry and
computational convenience, strike angles (¢)
different from zero are addressed by rotating
the reference frame of the displacement field
produced by a fault with zero strike. As a final
note, no slip direction other than pure strike-
slip or pure dip-slip mechanisms is allowed. In
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Fig. 2. Block diagram of the automatic procedure
to numerically calculate the displacement field in-
duced by faulting sources, as described in the text.

any case an arbitrary rake angle A=0°, 180°,
90°, 270° is easily attainable by means of a sim-
ple superposition of a pure strike and a pure dip,
each having seismic moment M=M,.cosA and
Mq=My.sinA , respectively.

The package is built up to operate automat-
ically. Once the fault plane with zero strike and
arbitrary dip angle is generated, the same For-
tran code creates an executable script to per-
form the following operations: i) the displace-
ment field is analytically calculated according
to the Okada model; ii) suitable boundary con-
ditions are formulated and formalized as ex-
plained in the following; iii) the FE simulation,
that is the most time consuming step, is carried
out; iv) reference frame rotation is applied to
the numerical solution in order to assign an ar-
bitrary strike angle. For plane domains, the an-
alytical solution for the system having arbitrary
strike and dip is also computed for comparison.
Obviously, if zero strike is expected, the proce-
dure stops after the FE simulation. On the oth-
er hand, different strike angles can be account-
ed for just by point iv), performed by a suitable
script generated by another Fortran interface.
Such a strategy remarkably reduces the compu-
tational demand, since only one FE simulation
is needed for each dip angle. This is highly de-
sirable especially in case of inverse applica-
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tions. In fig. 2, a block diagram of the described
procedure is shown.

4. Benchmark simulations

In the present work, the FE test domain is
represented by a 400x400x 100 km hexahedral
volume discretized into 13539 twenty-node brick
elements (i.e. quadratic elements), resulting in a
mesh containing 60288 nodes. Such a mesh takes
about 20 min to perform a static calculation on a
64-bit Intel Xeon 3.2 GHz, 8 GB RAM. The
mesh is built up to be finer within a central cubic
region spanning 100x100x100 km, while out-
side of this region the spatial resolution decreas-
es with increasing distance. In the central region,
labeled as core region, the minimum inter-node
distance is about 2.2 km. The model is shown in
fig. 1a,b. In the following, we will show some re-
sults and benchmarks for a homogeneous elastic
medium, but the generalization to a heteroge-
neous system is strightforward, as described in
Section 5. The Poisson coefficient is fixed at
v=0.25 and the Lamé constants at A=u=
=3.2:10"" N/m’. The fault plane measures about
50%30 km and is placed within the core region,
with the top of the plane located at a depth of
about 10 km under the surface. The total seis-
mic moment is set at Mo=1-10" N-m.

Boundary conditions must be carefully cho-
sen to avoid unwanted edge effects, the FE
method being intrinsically limited to manage
with finite domains. We experimented with a
number of boundary conditions commonly used
in the Literature. These include for example to
specify zero displacement along the bottom and
lateral surfaces delimiting the volume (Master-
lark et al., 2001) as well as to keep nodes on
these boundaries fixed in the direction perpendi-
cular to the surface itself (Cianetti et al., 2005;
Megna et al., 2005). As an example, figs. 3a-e
to 10a-e show the ground horizontal and verti-
cal displacement field for vertical and tilted
faulting sytems when the cited boundary condi-
tions are imposed, compared to the Okada solu-
tions. In the pictures, displacement directions
are rendered using a regular array of vector ar-
rows having the same length and color plots are
used to exhibit and compare moduli.
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Fig. 3a-e. Ground displacement field for a right-lateral strike slip with dip d=90° and strike ¢ =0° when the
the bottom and lateral nodes are fixed. Horizontal displacement field (on the /eff): a) numerical and analytical
results are displayed simultaneously as a vector plot (blue arrows: numerical solution; red arrows: analytical so-
lution); b) numerical and c) analytical solutions are displayed as color plots. Vertical displacement field (on the
right): d) numerical and e) analytical solutions are displayed as color plots.

Fig. 4a-e. Same as fig. 3a-e but for a right-lateral strike slip with 0=60° and ¢=0° when the the bottom and
lateral nodes are fixed.

From the comparison between displacement
directions and magnitudes it can be clearly seen

that none of the imposed conditions is able to
simulate an infinite domain removing any edge
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effect. As far as the horizontal displacements are
concerned, the strongest disagreement is ob-
served in the vector plots, where directions do
not coincide near the edges, although in some
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cases a slight difference in the distribution of
displacement magnitude can also be noticed.
The differences are even more evident for verti-
cal displacements, both in magnitude and espe-
cially in versus. Actually, it is clear that edge ef-
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Fig. 5a-e. Same as fig. 3a-e but for a right-lateral strike slip with d=90° and ¢=0° when the bottom and lat-
eral nodes are fixed in the direction perpendicular to the surface.

Fig. 6a-e. Same as fig. 3a-e but for a right-lateral strike slip with d=60° and ¢=0° when the bottom and lat-
eral nodes are fixed in the direction perpendicular to the surface.
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Fig. 7a-e. Same as fig. 3a-¢ but for a normal dip slip with d=90° and ¢=0° when the the bottom and lateral
nodes are fixed.

Fig. 8a-e. Same as fig. 3a-e but for a normal dip slip with d=20° and ¢=0° when the the bottom and lateral
nodes are fixed.

This evidence motivated us to seek an alter-
native strategy as follows. Analytical models, as
mentioned in the Introduction (Section 1), are
able to supply the exact solution for the diplace-
ment field generated by a faulting source within
an infinite homogeneous domain, when the rhe-

ological properties and the fault plane size and
orientation are known. Starting from this solu-
tion, and in particular from the Okada solution,
we can calculate the displacement each bottom
and lateral node would have if the domain was
infinite and impose these prescribed displace-
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ments as inhomogeneous boundary conditions.
This option is formally correct as long as rheo-
logically homogeneous systems are treated, but
it obviously represents an approximation if dis-
continuities and/or heterogeneities are intro-
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duced. In this case comparative tests should be
performed in order to tune the best boundary
condition set for each specific case.
Simulations for several test cases were per-
formed, taking into account several different
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Fig. 9a-e. Same as fig. 3a-e but for a normal dip slip with d=90° and ¢=0° when the the bottom and lateral
nodes are fixed in the direction perpendicular to the surface.

Fig. 10a-e. Same as fig. 3a-e but for a normal dip slip with =20° and ¢ =0° when the the bottom and lateral
nodes are fixed in the direction perpendicular to the surface.
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Fig. 11a-e. Ground displacement field for a right-lateral strike slip with 6 =90° and ¢ =0° when the Okada dis-
placements are applied as inhomogeneous boundary conditions. Horizontal displacement field (on the leff): a) nu-
merical and analytical results are displayed simultaneously as a vector plot (blue arrows: numerical solution; red
arrows: analytical solution); b) numerical and c) analytical solutions are displayed as color plots. Vertical displace-
ment field (on the right): d) numerical and e) analytical solutions are displayed as color plots.

Fig. 12a-e. Same as fig. 11a-e but for a right-lateral strike slip with 0=90° and ¢=30°.

strike and dip slip sources and applying for all
of the cases the so-called Okada boundary con-
ditions. In the following, we will exhibit some
selected results. Note that, due to our way of
dealing with the strike angle, the domain ap-
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pears rotated in figures concerning faults with
¢ =0°. Of course, to obtain plots identical to the
former, we would only need to start from a larg-
er domain which can be suitably cut out after
reference frame rotation.
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Vertical faulting represents the simplest sys-
tem to study, as no mesh distortion due to node
displacements is introduced and the FE simula-
tion is carried out on the original mesh. It is
worth noting that vertical dip slip has been con-
sidered for the sake of completeness, since it
does not make great physical sense, being al-
most absent in nature. We investigated vertical
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strike and dip slip faults with strike angle ¢ =
=0°, 30°. Figures 11a-e, 12a-e, 13a-e and 14a-e
show the ground horizontal and vertical dis-
placement field produced by the strike and dip
slip, respectively, compared to the Okada solu-
tions. It can be clearly seen that the agreement
is good: if some difference is observed it is just
very near the source, where our mathematical
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Fig. 13a-e. Same as fig. 11a-e but for a normal dip slip with 0=90° and ¢=0°.

Fig. 14a-e. Same as fig. 11a-e but for a normal dip slip with 0=90° and ¢=30°.
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Fig. 15a-e. Same as fig. 11a-e but for a right-lateral strike slip with d=60° and ¢=0°.

Fig. 16a-e. Same as fig. 11a-e but for a right-lateral strike slip with d=60° and ¢p=30°.

approximation, based on a finite distribution of
double couples, is less accurate.

Solutions on tilted faults with strike angle
equal to 0° and 30° have been also calculated.
Figures 15a-e and 16a-e show the ground hori-
zontal and vertical displacement field produced
by a strike slip with dip angle d=60° and
¢ =0° 30°, respectively. Similarly, figs. 17a-e

378

and 18a-e show the ground horizontal and ver-
tical displacement field produced by a dip slip
with dip angle 0 =20° and ¢ =0°, 30°, respec-
tively. Also in these cases the agreement be-
tween the numerical and the analytical solution
is very good, indicating that numerical errors
due to mesh distortion do not affect the final re-
sult.
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Fig. 17a-e. Same as fig. 11a-e but for a normal dip slip with 0=20° and ¢=0°.

Fig. 18a-e. Same as fig. 11a-e but for a normal dip slip with =20° and ¢=30°.

5. Illustrative applications

One of the most appealing features of mod-
eling static and quasi-static seismic deforma-
tion by means of the FE method is the possibil-
ity of dealing with rheological and/or geometri-
cal complexities. Using FEMSA, the introduc-
tion of 3D heterogeneities within the domain

-50
-50 0 50 100 150 200 250 300 350 400 450 500 x (km) -50 0 50 100 150 200 250 300 350 400 450 500

basically requires the creation of a suitable geo-
metrical model (for example to model a sub-
ducting slab in correspondence of a convergent
plate boundary) and/or a differentiated defini-
tion of the mechanical properties. In the follow-
ing, we present some simple examples of appli-
cations with the purpose of illustrating some
FEMSA capabilities.
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Fig. 19. Schematic representation of a border region between oceanic and continental crust.

We start considering a simple model in
which only rheological heterogeneities are tak-
en into account and perform both a static and a
quasi-static analysis.

The schematic model illustrated in fig. 19
represents a border zone between the oceanic
and the continental crust. The usual hexahedral
domain is split into three regions, i.e. 1) the
oceanic crust, 2) the continental crust and 3) the
mantle, having different rheological properties.
Practically speaking, the mesh elements are as-
sembled into three element sets, each having
different material properties assigned. Firstly,
each region is assumed to exhibit a purely elas-
tic behaviour. In this case, the rigidities pi, (>
and u3 are assigned in such a way that ui/u>~
~0.6 and u»/u3=0.8 and that their average u=
=(u1+u2+u3)/3 equals the rigidity value previ-
ously used for the homogeneous system. The
Poisson coefficient is fixed at v=0.25 and the
Lamé constants are set to be A=, as in the ho-
mogeneous system considered before. Second-
ly, we introduced linear Maxwell rheology into
the model, by assigning creep properties to the
mantle zone, with a viscosity value #=1-10"
Pa-s, and keeping the two crustal zones as pure-
ly elastic materials.

We considered a shallow vertical right-later-
al strike slip fault within the oceanic crust. Inho-
mogeneous boundary conditions have been ap-
plied to calculate the coseismic deformation,
while as far as the postseismic relaxation is con-
cerned we opted to keep nodes on the boundary
of the domain fixed in the direction perpendicu-
lar to the surface. The guasi-static analysis was
performed for a total time period of 100 years
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field: b) coseismic and c) postseismic after 100 years
are displayed as color plots.
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with a time step of 20 years. In fig. 20a-c the re-
sults of the two analyses are displayed and com-
pared. Viscoelastic relaxation induces an evident
amplification of both the horizontal and the ver-
tical displacement components, the amplifying
factor coming larger with increasing distance
from the source. While the viscoelastic contri-
bution shows generally the same sign as the
elastic residual for the horizontal components,
this is not everywhere true for the vertical dis-
placement, which exhibits a more complex pat-
tern of viscoelastic relaxation. All these behav-
iours are well known for laterally homogeneous
domains and are in agreement with several pre-
vious results obtained by means of semi-analyt-
ical models (e.g., Piersanti er al., 1995; Anto-
nioli et al., 1998; Nostro et al., 1999).
Noteworthy is that the presence of the rigidi-
ty contrast within the domain largely affects the
deformation field, producing a macroscopic
asymmetric pattern which appears especially pro-
nounced in the horizontal component. As expect-
ed, the presence of the oceanic crust amplifies the
displacements. The joint effects of viscoelastic
relaxation and lateral heterogeneity on the hori-
zontal components are somewhat straightfor-
ward: the asymmetry induced by lateral hetero-
geneity is further increased by the relaxation,
which is more vigorous under the oceanic region
where the crust is thinner (i.e. the viscoelastic
material is nearer). Though the general asymmet-
ric features are conserved, for the vertical compo-

£,

. \Ps

nents the pattern is more complex due to the trend
of vertical viscoelastic relaxation that not always
exhibits the same sign of the elastic offset.

Finally, we present a very simple spherical
model of the elastic residual deformation asso-
ciated with the giant Sumatra-Andaman earth-
quake of December 26, 2004.

The Sumatra earthquake resulted from com-
plex slip on the fault along the subduction zone
where the oceanic portion of the Indian Plate
slides under the Eurasian Plate, by the Indone-
sian island of Sumatra. The direction of conver-
gence of the subducting plate relative to the over-
riding plate is oriented oblique to the trench axis
and the rupture occurred for 1200 km along the
interplate megathrust.

Since the investigation of the deformation
field produced by this event requires a very long
range analysis, we built up a spherical domain
consisting of a portion of spherical zone of
about 1000 km thick spanning about 90x10° km’
on the Earth surface (see fig. 21). A layered
model having elastic rheology was introduced,
based on the volume averaged mean values of
the Lamé parameters according to the Prelimi-
nary Reference Earth Model (PREM) (Dzie-
wonski and Anderson, 1981). The domain was
meshed with 38348 20-nodes brick elements re-
sulting in a mesh containing 171537 nodes.
Such a mesh takes 44 min to perform a static
calculation on a 64-bit Intel Xeon 3.2 GHz, 8
GB RAM. As far as the source is concerned, we

S,

Fig. 21. Pictorial view of the spherical domain built up to investigate the 2004 Sumatra earthquake.
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Fig. 22. Ground horizontal (vector plot on the fop)
and vertical (color plot on the bottom) displacement
field calculated for the 2004 Sumatra earthquake
with a point source approximation.

started from the model proposed by Tsai et al.
(2005), consisting of five CMT point sources.
Then we overcame this model going towards
next levels of approximation, i.e. linear (1D) and
planar (2D) sources. The analysis with multiple
sources is actually treated as a superposition of
multiple single sources.

Figures 22-24 display the calculated horizon-
tal and vertical displacement field in the point,
line and plane approximation, respectively.
Standing on these pictures, on the spatial scale in-
volved in our analysis, the fault geometry (as far
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Fig. 23. Ground horizontal (vector plot on the rop)
and vertical (color plot on the bottom) displacement
field calculated for the 2004 Sumatra earthquake
with a line source (1D) approximation.

as a homogeneous moment release is considered)
does not seem to be crucial in defining the dis-
placement field generated by the earthquake. The
comparison with GPS data registered from per-
manent stations, as shown in fig. 25, is encourag-
ing despite the roughness of this illustrative mod-
el. In particular, with respect to previous semian-
alytical applications (Banerjee et al., 2005; Bo-
schi et al., 2006), we obtain a fair agreement with
the GPS stations in India without needing to in-
troduce any heterogeneity in the seismic moment
release.
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Fig. 24. Ground horizontal (vector plot on the right) and vertical (color plot on the left) displacement field cal-
culated for the 2004 Sumatra earthquake with a plane source (2D) approximation.
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Fig. 25. Comparison between horizontal displacements resulting from the FEM simulation and the GPS meas-
urements recorded from permanent stations (here plotted with error ellipses matching 60% confidence).
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6. Conclusions

In the present work, we developed a numer-
ical simulation tool, FEMSA (Finite Element
Modeling for Seismic Applications), to auto-
matically implement arbitrary faulting sources
and perform both the analytical and numerical
calculation to compute the horizontal and verti-
cal displacement and stress fields induced by
the fault slip. Our approach is based on Cal-
culiX, free software designed to solve field
problems by means of the FE method. The main
advantages of such a method are: reliability,
wide diffusion and flexibility, allowing geomet-
rical and/or rheological heterogeneities to be in-
cluded in a mechanical analysis. FEMSA is
freely distributed to the community.

We carried out an optimization study on
boundary conditions as well as a series of bench-
mark simulations on test cases, comparing our
numerical results with the analytical ones. Our
investigations induce to assert that the best
boundary conditions are obtained when the ana-
lytically calculated displacements are prescribed
on nodes located on the bottom and lateral edges
of the domain. Applying this method, we ob-
tained a very good agreement between numerical
and analytical results both for strike and dip slip
faults with different values of the strike and dip
angles. We also verified the capability of our ap-
proach to tackle some heterogeneity within the
domain, showing some simple preliminary ap-
plications.

The introduction of some real Earth com-
plexities, like more heterogeneous domain or
complex anelastic rheology, is pretty simple
and can be done with relatively small effort by
the user. Anyway FEMSA will be continously
developed and improved. Upgraded versions of
the package, accompanied by the user’s manu-
al, will be made available as new potentialities
are implemented (e-mail to volpe @ingv.it).
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