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Abstract

Finite Element methods (FEMs) are a powerful numerical simulation tool for modeling seismic
events as they allow to solve three dimensional complex models. We used a 3D Finite Element
approach to evaluate the co—seismic displacement field produced by the devastating 2004 Sumatra—
Andaman earthquake, which caused permanent deformations recorded by continuously operating
GPS networks in a region of unprecedented extent. Previous analysis of the static displacement
field focused on the heterogeneous distribution of moment release on the fault plane; our intention
here is to investigate how much the presence of crustal heterogeneities trades off seismic source
details. To this aim, we adopted a quite simple source model in modeling the event. The key
feature of our analysis is the generation of a complex three—dimensional spherical domain. More-
over, we also made an accurate analysis concerning boundary conditions, which are crucial for FE
simulations.
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1 Introduction

Three-dimensional Finite Element (FE) earthquake simulation is an excellent tool to investigate tec-
tonic deformation, since it allows accurate modeling of geometrically complex domains, complicated
faulting systems and heterogeneous material property distributions. In fact, FE modeling can be
considered one of the most versatile and accurate numerical methods to solve geophysical problems,
even though computationally demanding and intrinsically limited to manage with finite domains. The
last point requires to take care of boundary conditions (BC), which still represent an open problem
in the FE methods.

This paper is based on a 3D FE earthquake modeling. We present a methodological study aimed
at (i) addressing the effect of geometrical and rheological complexities on model-predicted earthquake
displacement field on large scale and (ii) demonstrating a trade—off between seismic source details and
crustal heterogeneities. We also analyse the impact of numerical artifacts which can be introduced by
BC. We used the 2004 Sumatra—Andaman earthquake as a case—study.

The Sumatra event was one of the largest megathrust events of the last century, originated from
complex slip on the fault along the subduction zone where the oceanic portion of the Indian Plate
slides under the Eurasian Plate. Using different datasets and techniques, the magnitude of the event
has been estimated within a range of values between M,, = 9.0 and M,, = 9.3 (Ammon et. al., 2005;
Banerjee et al., 2005; Park et al., 2005; Stein & Okal, 2005; Vallée, 2007), depending on assumptions
about the fault geometry and the amount of aseismic slip included in the source model. The slip
distribution has been estimated from seismic waves (Ammon et. al., 2005; Lay et al., 2005), static
offsets (Banerjee et al., 2005; Vigny et al., 2005; Boschi et al., 2006; Subarya et al., 2006), remote



sensing measurements (Meltzner et al., 2006; Subarya et al., 2006; Tobita et al., 2006) and joint
seismic-geodetic data (Chlieh et al., 2007). The overall magnitude of the earthquake has been further
constrained by Earth’s free oscillations (Park et al., 2005; Stein & Okal, 2005). Some moderate—far—
field analyses of GPS data, based on laterally homogeneous numerical modeling, explain particular
features of the detected quasi—static deformation field in terms of small scale complexities of the slip
distribution on the faulting plane (Banerjee et al., 2005; Boschi et al., 2006).

On the contrary, we adopted a quite simple source model, based on five CMT point sources accord-
ing to Tsai et al. (2005), to study the effects of 3D features, such as sphericity and lateral rheological
heterogeneities, on the deformation field produced by the earthquake. To this aim, we used a recently
developed FE simulation tool, FEMSA, which is the acronym for “Finite Element Modeling for Seismic
Applications” (Volpe et al., 2007). FEMSA is based on CalculiX, a free three—dimensional FE software
distributed under the terms of the GNU General Public License (see http://www.calculix.de). In
addition, we exploited the capabilities of an external mesher, Cubit, from Sandia National Laborato-
ries (see http://cubit.sandia.org), a full-featured software toolkit for geometry preparation and
robust generation of 2D and 3D FE meshes. We used Cubit to build up a complex and realistic spher-
ical model, marked by 3D meshing with rheological layering and lateral variations of the rheological
properties.

The paper is organized as follows: in section 2 we briefly review the computational method; in
section 3 we describe the FE model of the investigated area; in section 4 we discuss our results;
concluding remarks are summarized in section 5.

2 Computational details

We recently developed a flexible, versatile and robust numerical simulation tool (FEMSA) to inves-
tigate crustal deformation produced by arbitrary seismic dislocations by means of the FE method
(Volpe et al., 2007). FEMSA is basically a package composed by interface codes designed to automat-
ically embed faulting sources in plane or spherical domains and to set up and run the simulation. The
FE analysis is carried out by the CalculiX solver (see http://www.calculix.de), a freely distributed
3D structural analysis software.

Dislocations in FE modeling are commonly treated by contact or split—node technique. In the first
case, contact interfaces between deformable bodies with stick and finite frictional slip are introduced
(Xing & Makinouchi, 2000, 2002; Cianetti et al., 2005); in the second case, special nodes shared by two
elements are defined at which the displacement depends upon which element it is referred to (Melosh
& Raefsky, 1981). Differently from these approaches, in our simulations we apply the equivalent body
force theorem by incorporating seismic sources as appropriate distributions of double couples of forces
(Burridge & Knopoff, 1964; Dahlen, 1972). The reason is that CalculiX does not currently allow
any of the two mentioned techniques: in fact, contact capabilities are limited to frictionless contact,
which turns out to be not suitable to simulate faulting (except for tensile openings), and nodes at the
element interface are not splittable.

Actually, FEMSA generates the seismic source as a 0—, 1— or 2-D distribution of double couples,
by defining the force field to be applied to suitably selected nodes, according to the fault geometry
and the total seismic moment My. The rake angle is taken into account by handling oblique slip
as a superposition of a pure strike and a pure dip slip mechanism, each having seismic moment
M = My | and M = M| |, respectively. An almost arbitrary fault geometry can be
handled, consistently with the mesh resolution. Depending on the rheology of the domain, the source
generation algorithm differently manages the strike and dip angles in defining the fault orientation.
For laterally homogeneous domains, the dip angle is fixed during the source generation stage, while,
owing to the symmetry properties of the system, arbitrary strike angles are addressed by means of a
reference frame rotation of the displacement field produced by the zero—strike fault. This strategy,
when applicable, leads to consistent time savings, especially when a large number of models needs to



be computed, for instance when solving an inverse problem; however, it can not be applied if lateral
heterogeneities are involved. In such a case, both the strike and the dip angles are considered in
setting the fault geometry.

In practice, nodes in groups of four, corresponding to force application points, are suitably picked
from the mesh according to the slip vector and, if needed, moved to match the correct orientation, de-
pending on the fault geometry. The force field is then defined by computing the Cartesian components
of the forces for each selected node.

A special remark is dedicated to BC, being the FE method limited to manage finite domains.

In the Literature, BC are commonly established by imposing null displacements at the domain
boundaries (Megna et al., 2005; Masterlark & Hughes, 2008) or by keeping nodes on the bottom and
lateral surfaces fixed in the direction perpendicular to the surface itself (Cianetti et al., 2005).

In a previous paper (Volpe et al., 2007), we carried out an optimization study on BC, resulting
in the occurrence of pronounced artificial effects as we approach the edges, when the cited BC were
applied. A better though still not optimal solution is achieved with inhomogeneous boundary con-
ditions, by analytically computing the expected displacements at nodes on the bottom and lateral
edges. We use the Okada analytical solutions (Okada, 1985, 1992), which allows to investigate crustal
deformation within an isotropic elastic half-space, as a reference model. This approach is formally
correct only as long as rheologically homogeneous plane domains are treated, while it represents an
approximation if rheological heterogeneities and/or a spherical geometry are introduced, as in the
present case. This issue will be more thoroughly discussed in section 4.

It is worth stressing that BC are a crucial point in FE simulations, especially when complex do-
mains are involved. The main shortcoming is that, as a matter of fact, any condition applied to a finite
3D domain introduces a non—physical constraint which may shadow the effect of the heterogeneities.
A possible solution would be provided by infinite elements, commonly derived from standard finite
elements by modifying the shape functions, which are used to extend the FE method to unbounded
domain problems (Bettes, 1992; Dong & Selvadurai, 2009). Nevertheless, such an approach does not
represent the best solution for our purposes, as it approximates an infinite media, while the peculiarity
of the spherical approach is just the finiteness of the domain. The alternative that definitely would
allow to bypass the problem is to simulate a self—gravitating sphere representing the entire Earth.
This poses many theoretical and computational challenges and will be the goal of our future work.

The FEMSA package is built up to operate in an automatic way. In Figure 1 a schematic block
diagram of the simulation procedure is shown: i) the seismic source is generated; ii) the displacement
field is analytically calculated according to the Okada model; iii) inhomogeneous BC are formulated
and formalized as explained before; iv) the FE simulation is carried out; v) reference frame transfor-
mation is applied to the numerical solution to account for model sphericity; vi) in case of laterally
homogeneous domain, reference frame rotation is applied to the numerical solution to account for an
arbitrary strike angle. Note that the geometry and mesh definition does not appear in the diagram,
since it represents an independent pre—processing step for the simulation.

3 The simulation model

The investigation of the crustal deformation produced by the Sumatra earthquake, due to the unusual
size of the event, requires a very long range analysis, where curvature effects can not be neglected.
In a previous work (Volpe et al., 2007), we described a first preliminary approach based on a quite
rough 3D model (hereinafter referred to as V07) generated through the native CalculiX pre—processor
(cgx), an interactive 3D graphical interface. In the present study, in order to improve that model
and better account for detailed features, we built up a more complex and realistic model (hereinafter
referred to as CO1) by means of the Cubit mesher. The advantages in using Cubit over the native
CalculiX mesher consist in a stronger automation in both the geometry and mesh generation process,



the capability of achieving unstructured complex meshes and a better control over the mesh density
and quality.

Both the V07 and the C01 models are three-dimensional spherical domains, consisting of a portion
of spherical zone about 000 km thick and discretized using 0O-nodes brick elements. The mesh
density is controlled by accomplishing a finer mesh near the seismic source, where high stress and
strain gradients are expected, and a coarse mesh in areas of reasonably constant stress, in order to
achieve the best trade—off between accuracy of the solution and computational cost of the analysis.
We supposed multi-layered elastic domains to investigate the co—seismic deformation field by means
of a static calculation.

In the VO7 model (Volpe et al., 2007), the domain spans about 9 0 km on the Earth surface. A
FE structured mesh was generated, made by 3 3  elements, resulting in 3 nodes. The element
size is about 0 km near the source and about 00 km outside from the source region. The model
is shown in Figure 2. The rheological parameters were obtained from the volume averaged values
of the Lamé constants according to the Preliminary Reference Earth Model (PREM, Dziewonski &
Anderson, 1981).

In the CO01 model, the domain spans about . 0 km on the Earth surface. We introduced
a realistic rheological contrast between continental and oceanic lithosphere, by (conservatively) ex-
tracting the 00 m interface from a global seafloor topography model to retrieve the continental
margins. The geometrical model is displayed in Figure 3. The domain was discretized generating an
unstructured mesh with 9 elements, resulting in 00 nodes. The element size is biased from

0 to 00 km using the paving meshing algorithm in combination with an appropriate adaptive sizing
function. A front view of the mesh is shown in Figure 4. The contrast between continental and oceanic
lithosphere was introduced for a thickness of 0 km from the surface, composed by four 0-km-thick
layers, with rheological parameters for each layer deduced from the depth profiles of seismic velocities
and densities provided by Mooney et al. (1998). At depths greater than 0 km, the domain is split in
laterally homogeneous layers with variable thickness, whose elastic constants are calculated from the
ak135 velocity model proposed by Kennet et al. (1995).

The seismic source has been modeled with the multiple CMT solution proposed by Tsai et al.

(2005), which consists of five point sources, fitting mantle-wave data registered in the 00 00 s
period range by the IRIS Global Seismographic Network. All centroid depths are fixed at km.
Such a model results in a total seismic moment of . 0 N m, equivalent to a moment magnitude

M,, = 9.3. Three large slip patches (%, 33% and % of the total moment) are located in the
southern region of the fault, while the moment releases further north represent about 9% and %
of the total. The focal mechanisms of the five sources change systematically from south to north:
the strike rotates clockwise and the slip vectors rotate from nearly pure thrust to oblique slip with
a large right—lateral strike slip component. In our simulations, the analysis with multiple sources is
actually treated as a superposition of multiple single sources. We remark that the roughness of the
adopted source model is intentional in order to point out the trade—off with the real 3D features of
the simulation domain.

4 Results and discussion

The models described in the previous section were solved to obtain the co—seismic deformation field
produced by the 2004 Sumatra earthquake and the synthetic displacements were compared with a sub-
set of geodetic measurements recorded by continuously operating GPS networks. During the analysis
the rheology was modified, generating a set of FE models as summarized in Table 1. Also, different BC
were experimented, using the Okada analytical solution as described before. It is beyond any doubt
that such an approximation, neglecting both curvature and lateral heterogeneities, when assigned to
an heterogeneous spherical domain introduces a bias on the simulation results and influences the data
fit. Nevertheless the goal of the present work is not to give an improvement in modeling the Sumatra
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static deformation with respect to published works (e.g. Chlieh et al. (2007)), but to investigate the
role of rheological complexities and the trade—off with the source details. In any case, we considered
that our approximation improves the implementation of BC with respect to the “standard” choice of
assuming zero displacement along the boundaries, which dumps the deformation and would require a
larger model size (see Figure 5).

It is dutiful to say that in the very far—field the recorded offsets are not fitted by our calculations;
a similar effect has been detected with other approaches (Banerjee et al., 2005; Boschi et al., 2006),
where moreover deformations appear overestimated. In fact, modeling is affected by edge effects at
a long distance from the source due to the proximity of the mesh boundaries. In addition, the GPS
offsets registered in those regions can not be unambiguously associated with the earthquake, as the
occurrence of spurious signals can not be excluded.

Instead, we focused our attention on the moderate—far—field (Indian Ocean area) and the In-
dian region, where other numerical analyses neglecting lateral variations of the rheological properties
(Banerjee et al., 2005; Boschi et al., 2006) can fit the measured displacements only by introducing
strong constraints on the source model in the form of a highly heterogeneous slip distribution. In
these zones we are able to acceptably fit GPS measurements from the dataset obtained by Boschi et
al. (2006), holding the well-known limits of our modeling.

As a first step, inhomogeneous averaged BC were applied, by computing the Okada displacements
at the boundary nodes using the elastic parameters calculated from the total volume averaged PREM
values of the Lamé constants, neglecting rheological layering.

In Figure 6, the synthetic displacements calculated on the VO7 and CO01 models are compared
with GPS data from Boschi et al. (2006). It is worth noting that, in the VO7 model, GPS sites are
often not coincident with mesh nodes, due to the poor resolution, and the displacement on the closest
node is considered in the comparison. On the contrary, the finer mesh of the C01 model allows a
more punctual comparison with the GPS datum. In Table 2 the modeled vector magnitude on the
inspected sites, their relative error and the misfit with respect to the experimental measurements are
compared.

At GPS sites located in the Indian Ocean area the data fit is acceptable, if the roughness of the
seismic source model is taken into account. In particular, at the nearest stations (SAMP and NTUS),
which are the most sensitive to the detailed source structure, the direction of the modeled vectors is in
satisfactory agreement with the observations, while their magnitude is quite underestimated. At the
SAMP site the CO01 model improves the agreement, while at the NTUS station the V07 model better
reproduces the observed offset both in direction and (especially) in magnitude. More important, we
remark that a rather good agreement, although the displacements are again underestimated, is found
at the Indian sites (HYDE, IISC and BAN2), that Banerjee et al. (2005) and Boschi et al. (2006)
managed to fit, with a laterally homogeneous model, only at the cost of introducing a large number of
free parameters associated with highly heterogeneous distribution of slip in the source model, which
is not confirmed by seismological models. We stress that the poor spatial resolution of the V07 model
does not allow to discern between the BAN2 and the IISC stations, due to their small relative distance,
while the CO1 model does. The vector orientation at the HYDE station is definitely better matched
by the CO1 model, while the opposite holds for the IISC station. We care to notice that our fit
is strongly bound to the geometry of the simulation domain: a test simulation on a multi-layered
laterally homogeneous plane domain (hereinafter referred to as P01), with resolution similar to the
V07 model, failed in predicting the orientation of the co—seismic displacements at the Indian stations,
as is shown in Figure 7. This observation confirms that curvature has an important effect on the
computed results.

The comparison between plane and spherical geometry requires a small digression concerning the
moderate—far—field. From Figure 7, we note that the static offset at the SAMP station is better
reproduced by the POl than the V07 or C01 models. A similar behaviour is observed in the realm
of semi—analytical spherical models, where finite faults are approximated by a superposition of point



sources: in that case, a more precise estimation of moderate—far—field effects is obtained with planar
models, where the finite source is fully analytically implemented, since the calculation is not affected
by discretization (Piersanti et al., 1997; Nostro et al., 1999). In our simulations, a multiple point source
model is introduced in both the plane and the spherical models. Consequently, the difference in the
moderate—far—field results has to be accounted as the long-range effect of the Okada BC, which are
better matched by the plane model. In this respect, the simulation on the entire sphere is confirmed
to be necessary.

Since the dataset of Boschi et al. (2006) is lacking in moderate—far—field data, we also compared
our results with GPS measurements from Vigny et al. (2005), focusing on the source region. From
Figure 8, we can note that displacements computed with the C01 model are almost systematically
shorter than those computed with the V07 model, with few exceptions. In some case this implies a
better agreement with GPS offsets (for example at stations KUAL and GETI), while in other cases
the fit is worse (for example at stations PHKT and PHUK). Anyway, the orientation of the vectors
appears improved in the C01 model with respect to the VO7 model.

In order to improve the simulation, we refined BC for the C01 model: we took into account the
rheological layering and solved the Okada model for each layer using the appropriate set of elastic
constants; the corresponding computed displacements are then prescribed to nodes located on the
boundaries of the same layer. In the following, this will be referred to as the C02 model.

From Figure 9, where the comparison with the CO1 model and GPS data is shown, and from Table
2, we infer that the upgrading from the C01 to the C02 model has a very little effect on the simulation
results.

Ten years ago, Bilek & Lay (1999) estimated rigidity variations with depth along subduction zones
interfaces. Rigidity is a measure of the proportionality between shear stress and shear strain and affects
the degree of earthquake shaking through its influence on seismic wave speed and earthquake rupture
velocity. According to their results, the average rigidity of seismogenic zones appears to increase with
depth up to a factor of in the range 0 km. At depths below 0 km, the estimated rigidity
values are 3 times lower than in PREM. This result is consistent with the hypothesis that tsunami
generating earthquakes, which are typified by large slip and slow rupture velocity, occur in regions
of low rigidity at shallow depths. Several mechanisms may contribute to the described trend, but a
main role seems to be played by mineralogical phase transitions within the subducting sediments and
in the subducting plate, driven by pressure and temperature increasing with depth.

We modified the rheology of the C02 model within a limited region, spanning . 0 km near
the source, in order to fit the rigidity trend estimated by Bilek & Lay (1999) in the seismogenic zone.
Actually, this means we reduced the rigidity values in the depth range 0 0 km, as indicated in
Table 3. In the following, this will be referred to as the C03 model. Figure 11 shows the average
rigidity variations in the source region between depths of 0 and 0 km in the C02 and C03 models,
compared to the PREM values.

In Figures 12 and 13 we compare the computed vectors and the GPS offsets from the dataset of
Boschi et al. (2006) and Vigny et al. (2005), respectively. From Table 2, the Indian sites (HYDE,
IISC and BAN2), which are located immediately outside the softened source region, appear as not
influenced by the softening; at the nearest stations (SAMP and NTUS), instead, the vector magnitude
turns out to be slightly increased, but the effect is very small. Figure 14 displays the ratio between
the deformation magnitude calculated with the C03 and C02 models: the rigidity reduction produces
a small amplification of the displacements, strictly localized in the source region.

In order to inspect the behaviour of our modeling by emphasizing the softening effect, we reduced
the rigidity value by a factor of 3 in the depth range 0 00 km, as indicated in Table 3. In the
following, this will be referred to as the C04 model. The comparison with GPS measurements and
previous results from the C02 and C03 models, as reported in Figures 12 and 13 as well as in Table
2, shows an amplification of the displacement vectors, but the magnitude of the effect is still very
small. The ratio between the deformation magnitude obtained with the C04 and C02 models, shown



in Figure 15, presents a larger amplification with respect to Figure 14, but still strictly localized.

We modified the C04 model applying averaged instead of layered BC, using the average rigidity
value of the first O-km-thick rheological layer. In the following, this will be referred to as the
C05 model. The obtained displacements are compared with GPS measurements from Boschi et al.
(2006) in Figure 16 and turn out to be greatly increased in magnitude, so that now computed vectors
overestimate the GPS offsets. This result is crucial as it demonstrates that BC heavily affect our
simulations, in spite of the considerable extent of the simulation domain.

As a last check, we imposed an homogeneous rheology to the CO1 model and we adopted the
composite source model derived by Tsai et al. (2005). We firstly calculated crustal deformation by
using the elastic parameters obtained from the total volume averaged PREM values of the Lamé
constants (model C06) and then reducing the rigidity value by a factor of 3 in the whole domain,
edges included (model C07). Since within an homogeneous domain under elastic regime a linear
stress—strain relationship holds, the ratio between the deformation magnitudes obtained from the two
models is expected to be 3 everywhere. This circumstance only occurs if BC are also computed with
the reduced rigidity value, as shown in Figure 17. If this is not the case, i.e. if BC are invariably
computed using the initial averaged elastic parameters of the C06 model (model C08), a very long
range effect of the BC is observed (Figure 18), providing clear evidence that the simulation domain
adopted to investigate such a great event, even if large, is not large enough to avoid edge effects also
at a short distance from the source, i.e. at a large distance from the boundaries. Future work will be
then devoted to build up a totally spherical domain representing the entire Earth, in such a way that
the BC issue will be bypassed.

5 Conclusions

By means of a recently developed 3D Finite Element approach (FEMSA), we performed a methodologi-
cal study concerning the effects of 3D features, such as geometrical and/or rheological heterogeneities,
and BC on earthquake modeling. As a case-study, we evaluated the co—seismic displacement field
associated with the giant 2004 Sumatra—Andaman earthquake. To this purpose, we generated a com-
plex spherical simulation domain in which a real 3D meshing was introduced as a rheological contrast
between continental and oceanic lithosphere. This was achieved by extracting the continental mar-
gins from global bathymetry data. We also took into account a realistic variation of the rheological
properties with depth in the seismogenic zone, as proposed by Bilek & Lay (1999).

We compared the computed deformation field with GPS measurements using the datasets obtained
by Boschi et al. (2006) and Vigny et al. (2005) and paying special attention to the moderate—far—field
and the Indian sites. Our results highlight the existence of a trade—off between 3D features and source
details and a strong sensitivity to the applied BC.

Presently, most modeling approaches introduce a large number of free parameters to account for
small scale complexities of the slip distribution (Boschi et al., 2006; Chlieh et al., 2007), that are not
necessarily connected with the physics of the investigated event. We obtained an acceptable agreement
with data in the inspected regions using a simple point source model together with a complex spherical
3D meshed simulation domain, where curvature plays a crucial role. The 3D modeling partially trades
off the roughness of the source model. Of course we do not mean that there is no need to take into
account heterogeneous energy release mechanisms. Our point is that model complexities should be
introduced with a logical and physically consistent hierarchy. The presence of major 3D geometrical
and rheological features, as sphericity or oceanic crust contrast, is certainly true and, in order to
avoid artificial trade—off, their effect should be considered before introducing further complexities as
heterogeneous energy release on the fault plane. We remark the occurrence of an asymmetry in the
trade—off, since the additional parameters in our simulations are not free parameters but real Earth
complexities, which are constrained by the physical properties of the investigated area and can not be
arbitrarily tuned.



The systematic analysis of BC revealed a very long range effect on the calculations, even if the
simulation domain has a considerably great extent. This result demonstrates that a limited domain,
even if large, is not suitable to investigate the effects produced by an event of such a magnitude,
requiring the generation of a self-gravitating sphere representing the entire Earth. In this respect, the
Sumatra earthquake should be regarded as a real “global” event.
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Table 1: Summary of the characteristics of the FE models implemented in the present study.

Model Geometry Mesher Rheology Lateral heterogeneities BC Rigidity softening
Vo7 spherical cgx layered no averaged no
PO1 planar Cubit  homogeneous no averaged no
Co1 spherical ~ Cubit layered yes averaged no
C02 spherical ~ Cubit layered yes layered no
Co3 spherical ~ Cubit layered yes layered yes
Co4 spherical ~ Cubit layered yes layered yes
C05 spherical ~ Cubit layered yes averaged yes
C06 spherical ~ Cubit  homogeneous no averaged no
co7 spherical ~ Cubit  homogeneous no averaged yes
Co08 spherical ~ Cubit  homogeneous no averaged yes

“The total volume averaged PREM rigidity value is used.

*The layer by layer rigidity values are used.

“The first 10-km—thick layer rigidity value is used.

4The reduced total volume averaged PREM rigidity value is used.

¢Applied in the source region in the depth range 10 — 40 km.

f Applied in the source region in the depth range 0 — 100 km.

9Applied in the whole domain.

h Applied in the whole domain but the edges.
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Table 2: Absolute value of the horizontal displacement vector on a set of GPS sites from the dataset of
Boschi et al. (2006) and from FE simulations. The vector magnitude is expressed in cm. The relative

error, defined as | | | | | 00, and the misfit, defined as | |
| | , are also indicated between brackets.
GPS Vo7 Co1 C02 Co03 Co4

SAMP 14.62 4% 6.64(-55%,46.8) 6.27(-57%,35.9) 6.33(-57%,34.3) 6.63(-55%,31.9) 8.71(-40%,23.4
NTUS 237 22% 1.50(-37%,4.6) 0.58(-75%,11.3) 0.54(-77%,12.1) 0.55(-77%,12.0) 0.60(-75%,12.3
HYDE 094 38% 0.37(-61%,4.3)  0.50(-47%,4.3)  0.46(-51%,4.1)  0.44(-53%,4.2)  0.46(-51%,4.4)
[ISC 152 34% 0.82(-46%,4.1)  0.95(-38%,5.3)  0.85(-44%,5.2)  0.85(-44%,5.1)  0.89(-41%,5.4)
BAN2 1.10 43% / 0.90(-17%,3.4)  0.81(-26%,3.5)  0.81(-26%,3.4)  0.85(-22%,3.6)
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Table 3: Rigidity layering used to perform the FE simulations. The softening is only applied in the
seismogenic zone. Up to 40 km from the surface the continental and the oceanic lithosphere are
differentiated. Numerical values are expressed in units of 0 © Pa.
C01,C02 Co03 C04,C05

cont. oce. | cont. oce. | cont. oce.

0-10 km 0.58 0.58 | 0.58 0.58 | 0.19 0.19

1020 km 3.43 6.48 | 0.86 1.62| 1.14 2.16

20-30 km 433 688 | 144 229 | 1.44 2.29

3040 km 6.48 6.88 | 2.16 229 | 2.16 2.29

40-180 km 6.71 6.71 2.24
80-100 km 6.78 6.78 2.26
100-120 km 6.78 6.78 6.78
120-140 km 6.87 6.87 6.87
140-240 km 7.07 7.07 7.07
240-340 km 7.67 7.67 7.67
340 670 km 10.9 10.9 10.9
670-1000 km 17.3 17.3 17.3
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Figure 1: Block diagram of the automatic simulation procedure implemented in FEMSA | as described
in the text. The green path is related to laterally homogeneous domains, the red path is related to
domains with lateral variations of the rheological properties, while the blue path is shared between
the two types of domain.
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Figure 3: Pictorial view of the model generated by Cubit. A front and a lateral perspective of the
domain are shown, both being represented on the sphere for a better view. The contrast between the
continental and the oceanic lithosphere is emphasized by colours.
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Figure 4: Front view of the unstructured mesh generated by Cubit.
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Figure 5: Comparison between GPS measurements from Boschi et al. (2006) and the horizontal
displacements resulting from the FE simulations on the C01 model with zero displacement along the
boundaries. Error ellipses correspond to 90% confidence.
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Figure 6: Comparison between GPS measurements from Boschi et al. (2006) and the horizontal
displacements resulting from the FE simulations on the V07 and C01 models. Error ellipses correspond
to 90% confidence.
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Figure 7: Comparison between GPS measurements from Boschi et al. (2006) and the horizontal
displacements resulting from the FE simulation on the flat PO1 domain. Error ellipses correspond to
90% confidence.
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Figure 8: Comparison between GPS measurements from Vigny et al. (2005) and the horizontal dis-
placements resulting from the FE simulations on the V07 and CO1 models. Error ellipses correspond
to 60% confidence.
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Figure 9: Comparison between GPS measurements from Boschi et al. (2006) and the horizontal
displacements resulting from the FE simulations on the C01 and C02 models. Error ellipses correspond
to 90% confidence.
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Figure 10: Comparison between GPS measurements from Vigny et al. (2005) and the horizontal
displacements resulting from the FE simulations on the C01 and C02 models. Error ellipses correspond
to 60% confidence.
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Figure 11: Plot of the (average) rigidity variations with depth in the range 0 0 km in the source
region as fixed in the C02 (as well as C01) and C03 models, compared to the PREM values.
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Figure 12: Comparison between GPS measurements from Boschi et al. (2006) and the horizontal
displacements resulting from the FE simulations on the C02, C03 and C04 models. Error ellipses
correspond to 90% confidence.
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Figure 13: Comparison between GPS measurements from Vigny et al. (2005) and the horizontal
displacements resulting from the FE simulations on the C02, C03 and C04 models. Error ellipses
correspond to 60% confidence.
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Figure 14: Ratio between the deformation magnitude calculated with the C03 and C02 models.
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Figure 15: Ratio between the deformation magnitude calculated with the C04 and C02 models.
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Figure 16: Comparison between GPS measurements from Boschi et al. (2006) and the horizontal
displacements resulting from the FE simulations on the C04 and C05 models. Error ellipses correspond
to 90% confidence.
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Figure 17: Ratio between the deformation magnitude calculated with C07 and C06 models.
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Figure 18: Ratio between the deformation magnitude calculated with C08 and C06 models.
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