73 research outputs found

    Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma

    Get PDF
    Background and Aims: Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. Approach and Results: Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. Conclusions: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC

    Proyecto conjunto IASB-FASB sobre la presentación de informes financieros: una aplicación empírica a empresas argentinas

    Get PDF
    Los organismos internacionales IASB y FASB están trabajando conjuntamente desde 2002 para lograr la convergencia entre las NIIF y los principios contables generalmente aceptados de Estados Unidos. En ese marco, uno de los proyectos en estudio y que puede considerarse revolucionario por el importante cambio que trae aparejado, es el referido a la presentación de los estados financieros. El presente artículo tiene el propósito de analizar el proyecto de norma arriba citado y realizar una prueba empírica en las empresas líderes de la Bolsa de Comercio de Buenos Aires que aplican NIIF para los años 2011 y 2012. En un primer lugar se analiza el proceso de convergencia encarado por IASB y FASB, las modificaciones propuestas por el proyecto, las cuales se consideran muy pertinentes en las discusiones que se dan en la actualidad en nuestro país, particularmente por la adopción de las NIIF en función de las Resoluciones Técnicas Nros. 26 y 29. A continuación se calculan una serie de ratios típicos del análisis de estados contables de manera comparativa, tomando los estados contables publicados por las empresas y los mismos pero con el nuevo formato de exposición, establecido en el proyecto de norma. Se concluye que los estados financieros son muy importantes por las decisiones que traen aparejados en las personas que los leen, y que en la medida que la información sea presentada de manera diferente, aún cuando la realidad de la empresa que intenten mostrar sea la misma, las decisiones de los usuarios pueden verse afectadas.Fil: Quadro, Martín E. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Werbin, Eliana M. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Priotto, Hugo C. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Veteri, Liliana J. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Pellegrinet, Mariano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Otras Economía y Negocio

    Synthetic and computational studies on the tricarboxylate core of 6,7-dideoxysqualestatin H5 involving a carbonyl ylide cycloaddition–rearrangement

    Get PDF
    Reaction of diazodiketoesters 17 and 28 with methyl glyoxylate in the presence of catalytic rhodium(II) acetate generates predominantly the 6,8-dioxabicyclo[3.2.1]octanes 29 and 30, respectively. Acid-catalysed rearrangement of the corresponding alcohol 31 favours, at equilibrium, the 2,8-dioxabicyclo[3.2.1]octane skeleton 33 of the squalestatins–zaragozic acids. Force field calculations on the position of the equilibrium gave misleading results. DFT calculations were correct in suggesting that the energy difference between 31 and 33 should be small, but did not always suggest the right major product. Calculation of the NMR spectra of the similar structures could be used to assign the isomers with a high level of confidence

    Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma.

    Get PDF
    BACKGROUND AND AIMS: Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. APPROACH AND RESULTS: Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. CONCLUSIONS: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC.J.L.G., Z.H. and M.V. are funded by the Medical Research Council (MRC grant MC UP A90 1006 & MC PC 13030). J.L.G. and Z.H. are supported by the Imperial Biomedical Research Centre, NIHR. M.A., A.V-P., F.O., Q.M.A. and M.V. are members of the EPoS consortium, which is funded by the Horizon 2020 Framework Program of the European Union under Grant Agreement 634413. F.O. is supported by MRC program grants (MR/K0019494/1 and MR/R023026/1). J.L is supported by MRC PhD studentship and a CRUK program grant (C18342/A23390). M.V. and A.V-P. are supported by MRC MDU and MRC DMC (MC UU 12012/2). Q.M.A. received additional research support from The Liver Research Trust and is a Newcastle NIHR Biomedical Research Centre investigator. M.A., M.V., A.V-P. and J.L.G. received research support from the Evelyn Trust and the NIHR Cambridge Biomedical Research Centre (Gastroenterology Theme)

    Delta1 Expression, Cell Cycle Exit, and Commitment to a Specific Secretory Fate Coincide within a Few Hours in the Mouse Intestinal Stem Cell System

    Get PDF
    The stem cells of the small intestine are multipotent: they give rise, via transit-amplifying cell divisions, to large numbers of columnar absorptive cells mixed with much smaller numbers of three different classes of secretory cells - mucus-secreting goblet cells, hormone-secreting enteroendocrine cells, and bactericide-secreting Paneth cells. Notch signaling is known to control commitment to a secretory fate, but why are the secretory cells such a small fraction of the population, and how does the diversity of secretory cell types arise? Using the mouse as our model organism, we find that secretory cells, and only secretory cells, pass through a phase of strong expression of the Notch ligand Delta1 (Dll1). Onset of this Dll1 expression coincides with a block to further cell division and is followed in much less than a cell cycle time by expression of Neurog3 – a marker of enteroendocrine fate – or Gfi1 – a marker of goblet or Paneth cell fate. By conditional knock-out of Dll1, we confirm that Delta-Notch signaling controls secretory commitment through lateral inhibition. We infer that cells stop dividing as they become committed to a secretory fate, while their neighbors continue dividing, explaining the final excess of absorptive over secretory cells. Our data rule out schemes in which cells first become committed to be secretory, and then diversify through subsequent cell divisions. A simple mathematical model shows how, instead, Notch signaling may simultaneously govern the commitment to be secretory and the choice between alternative modes of secretory differentiation

    Modelling the Spatio-Temporal Cell Dynamics Reveals Novel Insights on Cell Differentiation and Proliferation in the Small Intestinal Crypt

    Get PDF
    We developed a slow structural relaxation model to describe cellular dynamics in the crypt of the mouse small intestine. Cells are arranged in a three dimensional spiral the size of which dynamically changes according to cell production demands of adjacent villi. Cell differentiation and proliferation is regulated through Wnt and Notch signals, the strength of which depends on the local cell composition. The highest level of Wnt activity is associated with maintaining equipotent stem cells (SC), Paneth cells and common goblet-Paneth cell progenitors (CGPCPs) intermingling at the crypt bottom. Low levels of Wnt signalling area are associated with stem cells giving rise to secretory cells (CGPCPs, enteroendocrine or Tuft cells) and proliferative absorptive progenitors. Deciding between these two fates, secretory and stem/absorptive cells, depends on Notch signalling. Our model predicts that Notch signalling inhibits secretory fate if more than 50% of cells they are in contact with belong to the secretory lineage. CGPCPs under high Wnt signalling will differentiate into Paneth cells while those migrating out from the crypt bottom differentiate into goblet cells. We have assumed that mature Paneth cells migrating upwards undergo anoikis. Structural relaxation explains the localisation of Paneth cells to the crypt bottom in the absence of active forces. The predicted crypt generation time from one SC is 4–5 days with 10–12 days needed to reach a structural steady state. Our predictions are consistent with experimental observations made under altered Wnt and Notch signalling. Mutations affecting stem cells located at the crypt floor have a 50% chance of being propagated throughout the crypt while mutations in cells above are rarely propagated. The predicted recovery time of an injured crypt losing half of its cells is approximately 2 days

    Paneth Cells in Intestinal Homeostasis and Tissue Injury

    Get PDF
    Adult stem cell niches are often co-inhabited by cycling and quiescent stem cells. In the intestine, lineage tracing has identified Lgr5+ cells as frequently cycling stem cells, whereas Bmi1+, mTert+, Hopx+ and Lrig1+ cells appear to be more quiescent. Here, we have applied a non-mutagenic and cell cycle independent approach to isolate and characterize small intestinal label-retaining cells (LRCs) persisting in the lower third of the crypt of Lieberkühn for up to 100 days. LRCs do not express markers of proliferation and of enterocyte, goblet or enteroendocrine differentiation, but are positive for Paneth cell markers. While during homeostasis, LR/Paneth cells appear to play a supportive role for Lgr5+ stem cells as previously shown, upon tissue injury they switch to a proliferating state and in the process activate Bmi1 expression while silencing Paneth-specific genes. Hence, they are likely to contribute to the regenerative process following tissue insults such as chronic inflammation

    Krüppel-like Factor 4 Regulates Intestinal Epithelial Cell Morphology and Polarity

    Get PDF
    Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC) staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT), was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D) intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell morphology by regulating proliferation, differentiation and polarity of the cells

    Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice

    Get PDF
    The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFPSAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues
    • …
    corecore