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ABSTRACT 

Background & Aims: Hepatocytes undergo profound metabolic rewiring when primed to proliferate 

during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic 

control of these processes is not fully understood. In order to capture the metabolic signature of 

proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver 

regeneration, pharmacologically- and genetically-activated cell proliferation, and HCC.  

Approach & Results: Integrating metabolomics, lipidomics and transcriptomics, we link changes in 

the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty 

acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid 

signature in human HCC and show a positive correlation of monounsaturated-PC with hallmarks of 

cell proliferation and hepatic carcinogenesis.  

Conclusion: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered 

when hepatocytes switch to proliferation. These represent a source of targets for the development 

of new therapeutic strategies and prognostic biomarkers of HCC.  
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INTRODUCTION 

The liver is characterised by an impressive regenerative potential following cell loss or the activation 

of direct hyperplasia programs. Compared to other organs and tissues, where the regeneration is 

mainly driven by stem cell precursors, liver regeneration often requires the proliferation of 

differentiated hepatocytes to compensate for cell loss (1). Aberrant hepatocyte proliferation in 

chronic liver disease is also a driving cause of hepatocellular carcinoma (HCC), one of the leading 

causes of cancer-related deaths world-wide. HCC typically occurs on a background of chronic liver 

disease, with risk factors including viral or autoimmune hepatitis, chronic alcohol abuse, and non-

alcoholic fatty liver disease (NAFLD) (2, 3). HCC is genetically heterogeneous, with mutations in the 

TERT promoter, TP53 and CTNNB1 (-catenin) most frequently reported (4). Whilst more commonly 

preceded by cirrhosis, HCC may also develop directly in a context of non-alcoholic steatohepatitis 

(NASH) (5). The pathogenesis of fatty liver-associated HCC is complex and the focus of intense 

research. Some of the contributing factors are thought to include hepatic lipotoxicity, oxidative 

stress, modulation of nuclear receptors, stellate cell activation, and the chronic activation of wound-

healing processes including inflammatory and immune responses, together producing a carcinogenic 

milieu (6-8).  

One of the hallmarks of HCC, and cancer in general, is cellular proliferation. In order to fuel this 

proliferation, there is a higher demand for macromolecular biosynthesis, for structural and energy 

purposes. There is also a need to evade the consequences of a deleterious environment (e.g. 

hypoxia and reactive oxygen species), and thus extensive metabolic reprogramming occurs in cancer 

cells (9-12). Increased uptake and utilisation of glucose via glycolysis (the Warburg effect), increased 

fatty acid uptake and increased de novo lipid synthesis have all been described (13, 14).  It is widely 

accepted that many molecular and metabolic mechanisms are partially conserved between liver 

regeneration and HCC (15). Despite the importance for normal wound healing and its relevance to 

HCC, very little has been reported on the metabolic alterations of regenerating hepatocytes, 
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particularly with respect to lipid-related pathways (16-19). Characterising the metabolic remodelling 

that hepatocytes undergo during compensatory regeneration and in HCC is thus crucial to identify 

metabolic pathways that relate to cell proliferation in general and, more specifically, to HCC growth. 

To bridge this gap, we used a multi-omics approach to characterise the metabolic rewiring of 

hepatocytes in proliferation, for a range of mouse models of liver regeneration, hepatic hyperplasia 

and HCC. Overall our findings shed new light on the lipid-related metabolic adaptations occurring in 

cell proliferation and survival, highlighting a coherent role of lipid composition and lipid pathways in 

the context of liver regeneration and cancer. 

 

EXPERIMENTAL PROCEDURES 

Animal studies 

All data are from male C57BL/6 mice purchased from Charles River (Edinburgh, U.K.) or MRC Harwell 

Institute (Harwell, U.K.). Mice were housed in a temperature-controlled room (21°C) with a 12-hour 

light/dark cycle with free access to diet and water. The UK Home Office and the Bioethics 

Committees of the Universities of Cambridge and Newcastle approved all animal procedures. Mice 

were fed on a chow diet (Safe Diets, Code ds-105) unless otherwise stated in the description of the 

different procedures. 

Partial hepatectomy: Twelve week-old mice underwent two-thirds partial hepatectomy (PH) 

procedure, according to the method of Higgins and Anderson (20). The left lateral and median lobes 

were completely excised. Mice were sacrificed 3 days after hepatectomy to mimic the peak of 

proliferation. Resected livers were used as time 0 control for gene and lipid analyses to perform 

paired analyses (N = 5 per group). 

Carbon tetrachloride studies: Sixteen week old mice were maintained as specific pathogen free 

according to the FELASA Guidelines and underwent IP injection of 2 L/g body weight of CCl4 : olive 
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oil (1:1 v/v) mix, or olive oil only (N = 3 per group). Mice were humanely culled under isofluorane 

terminal anaesthesia, 3 days after the IP injection.  

Phenobarbital: Pharmacologically-induced hepatocyte proliferation was induced in mice (18-20 

weeks old) by the administration of 0.1% phenobarbital (PB) in drinking water for 72 hr, before 

humane culling (N = 5 or 6 per group).  

N-Diethylnitrosamine-induced HCC: Two week-old mice were given a single IP injection of N-

diethylnitrosamine (DEN) (30 mg/kg) and were maintained on a chow diet for a further 40 weeks (N 

= 4) or a high fat diet (HFD; D12331, Research Diets Inc with 58 kcal% fat and sucrose) for a further 

30 weeks (N = 6). Mice fed a HFD were also given 42.1 g/L of sugar (18.9 g glucose and 23.0 g of 

fructose) in their drinking water.  

Oncogenic model of HCC:  In a genetic mouse model of HCC, activation of Kras and Myc oncogenes in 

sporadic hepatocytes and subsequent tumour formation, was achieved in KrasG12D-RosaMycER 

animals (21, 22) i.v. delivery of AAV8-TBG-CRE virus (Vector Biolabs, Malvern, PA) and daily i.p. 

tamoxifen (Sigma Aldrich, St. Louis, MO) delivery for 2 weeks.  

Human samples 

Seven patients undergoing liver transplantation for HCC, developing in a cirrhotic fatty liver (NASH, 

N=2; alcohol-related liver disease, N=5; Table S1) background were recruited at Addenbrooke’s 

Hospital, Cambridge (Division of Hepatology). All the patients had HCC and tumour-free background 

liver tissue collected. Histological analysis was performed by the Department of Pathology, 

Addenbrooke’s Hospital, and snap-frozen tissue was stored at -80 °C for research purposes in the 

Cambridge Human Tissue Bank. The study protocol was approved by the Office for Research Ethics 

Committees of Northern Ireland (LREC 16/NI/0196). All patients gave their informed consent for the 

use of clinical data and samples for scientific research purposes. The principles of the Declaration of 

Helsinki were followed. 
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Lipid and metabolite profiling  

Lipids and metabolites were extracted from tissue using the Folch method (23). Briefly, 30 mg of 

liver tissue was homogenised in chloroform: methanol (2:1, 1 mL) using a TissueLyser (Qiagen Ltd., 

Manchester, UK). Deionised water (400 L) was added, and the samples well mixed. Separation of 

the aqueous and organic layers was carried out following centrifugation (12,000 g, 10 min). The 

resulting organic and aqueous extracts were dried-down under nitrogen or in a vacuum centrifuge, 

respectively and stored at -80 oC until analysis. 

The organic lipid-containing layer was analysed by untargeted liquid chromatography-mass 

spectrometry (LC-MS) using an Accela Autosampler coupled to a LTQ Orbitrap EliteTM (Thermo Fisher 

Scientific, Hemel Hempstead, UK). Lipid identification was performed by accurate mass using an in-

house database. The aqueous fraction was analysed by targeted LC-MS/MS using UHPLC+ coupled to 

a TSQ Quantiva mass spectrometer (Thermo Fisher Scientific, Hemel Hempstead, UK). The mass 

spectrometer was operated in SRM mode; transitions and source conditions for each metabolite are 

summarised in Table S2. Further method details are available in the supporting information. 

RNA extraction 

RNA was isolated using miRNAeasy Mini Kits (Qiagen), according to the manufacturer’s instructions. 

Samples were stored at - 80°C prior to use. All reagents and consumables used were nuclease free 

(molecular biology grade). RNA purity (A260/A280 > 1.80) and concentration were determined using 

Nanodrop (Thermo Fisher scientific, Delaware USA). RNA integrity was studied using the 2100 

Bioanalyzer System (Agilent) and RNA 6000 Nano Kit. 

Whole transcriptome amplification and RNA sequencing 

RNA from tissues of murine (2 g RNA) or human (1 g RNA) were used to generate barcoded 

sequencing libraries using the TruSeq® Stranded mRNA Library Preparation Kit (Illumina) or TruSeq 

Stranded total RNA Library Preparation Kit for murine and human liver, respectively, following 
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manufacturer’s instructions. The sequencing libraries were normalized for concentration and 

combined into pools. The libraries were sequenced using an Illumina HiSeq 4000 instrument at 

single-end 50bp (SE50) or NextSeq 500 at single-end 75bp (SE75), equivalent to > 20 million reads 

per sample. 

Bioinformatics functional analyses 

Pathway enrichment was investigated for differentially expressed genes within groups using 

Ingenuity Pathway Analysis (IPA, Qiagen). Canonical pathways, Bio-functions, and Upstream 

Regulators analyses were generated by imputing “biologically significant” genes [statistically 

significant (q score < 0.05) and with -0.378 < log2 (fold change) > 0.378]. Significantly (p < 0.05) 

enriched hits were then ranked in terms of activation status (Z-score). We additionally used IPA to 

compare the pathways significantly (p < 0.05) enriched in all the datasets, with predicted 

activation/inhibition in all the datasets, and with -1 < Z-score > 1 in at least one comparison, and 

same direction of modulation.  

Flux balance analysis 

Using R software packages SBMLR , BiGGR  and sybil , we performed flux balance analysis (FBA) on 

HepatoNet1 , a manually reconstructed tissue-specific genome-scale metabolic model (GEM) for the 

hepatocyte. To perform FBA on our models, we first determined metabolic fluxes in the ‘’normal’’ 

hepatocyte. Then, we mimicked the observed transcriptional changes for differentially expressed 

genes in each of the experimental set-ups (PH, CCl4 and DEN/HFD), by increasing or decreasing the 

metabolic fluxes of the reactions catalysed by enzymes corresponding to the up- or down-regulated 

genes of interest. Further method details available in the Supporting Information. 
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RESULTS  

Metabolic remodelling during proliferation and cancer   

In order to elucidate the metabolic adaptations occurring in normal hepatocytes when they switch 

to proliferate, we used murine studies of compensatory regeneration following partial hepatectomy 

(PH) or acute toxic damage induced by carbon tetrachloride (CCl4), and direct hyperplasia induced by 

phenobarbital (PB, an activator of the constitutive active androstane receptor (CAR). Seventy-two 

hours after the challenge, all the experimental models showed a substantial proportion of 

hepatocytes expressing the proliferating cell nuclear antigen (PCNA), suggesting that proliferative 

programs were activated in these cells at the time-point chosen (Figure S1A-C). Following CCl4-

treatment, there was extensive necrosis noted in pericentral areas, accompanied by increased 

inflammatory infiltrates (Figure S1B), whereas PB-treatment resulted in mild to moderate steatosis 

(Figure S1C), as shown before (24). To study proliferation in the context of HCC on a “lean” or fatty 

liver background, mice exposed to N-diethylnitrosamine (DEN) were maintained on either chow or 

high fat diet (HFD) (25).  

Using Next Generation Sequencing (NGS) and Ingenuity Pathway Analysis (IPA), we studied the 

biological processes modulated in compensatory regeneration (PH and CCl4) and HCC (DEN/HFD). As 

expected, we identified upregulation of pathways/bio-functions and upstream regulators associated 

with the regulation of cell cycle, survival, migration, invasion, and chromatin and extracellular matrix 

remodelling (Supporting file 1). In addition, upregulation of inflammation, angiogenesis, and other 

processes relevant for growth of multiple cancer types were identified. 

IPA also predicted dysregulation of multiple canonical pathways and bio-functions involved in 

metabolism (Figure 1A), including the suppression of amino acid catabolism and inhibition of the 

nuclear receptor peroxisome proliferator-activated receptor α (PPARα; the master transcriptional 

regulator of hepatic fatty acid oxidation). Increased carbohydrate metabolism, and processes 

favouring the accumulation of lipids and cholesterol (which are needed for fueling proliferation; 



11 
 

Figure 1A) were also featured. Increased lipid synthesis was predicted in PH and DEN/HFD only, 

whilst increased oxidative stress featured only in models of hepatotoxicity and cancer (CCl4 and 

DEN/HFD). Furthermore, suppression of fatty acid oxidation (and associated pathways) 

predominantly occurred in the CCl4 model, but did not reach significance in PH and DEN/HFD 

models. 

Next, we used IPA to study the activation status of upstream regulators (Figure 1B-1C, Supporting 

file 1). Interestingly, there was predicted activation of a number of nuclear receptors and their co-

activators (e.g. Nrip1, Pxr, Rara, Ar, Vdr and the phospholipid sensor Lrh1 - previously described to 

control liver regeneration and HCC (8)); and of other crucial modulators of glucose and lipid 

metabolism. Predicted inhibited upstream regulators included nuclear receptors such as Hnf4a, the 

farsenoid X receptor (Fxr), as well as a plethora of other proteins involved in glucose and lipid 

metabolism, and negatively associated with cell proliferation and cancer (such as Pten, Hnf1a/b, 

Foxa1, Acox1 and Apoe). These results suggest that the rewiring of hepatocyte metabolism is 

orchestrated at transcriptional level, and that multiple factors are coherently modulated to allow the 

switch toward proliferation. In particular, changes to lipid and amino acid metabolism were 

indicated. 

Proliferating hepatocytes are characterised by distinctive lipid composition 

To investigate changes to lipid metabolism, we performed lipidomics experiments on models of 

compensatory regeneration (PH and CCl4) and direct hyperplasia (PB). Proliferating liver tissue had 

distinct lipid profiles to their corresponding control group for all three models (Figure 2A, Figure S2, 

Supporting file 2). Using orthogonal projection to latent structures discriminant analysis (OPLS-DA; 

R2 = 0.89, Q2 = 0.82, p < 0.001), we found that samples undergoing compensatory regeneration had 

increased monounsaturated fatty acid (MUFA)-containing phosphatidylcholine (PC), 

phosphatidylethanolamine (PE) 40:6, short chain triacylglycerides (TAG) and free cholesterol, with a 

decrease in polyunsaturated fatty acid (PUFA)-containing PCs and sphingomyelin (SM) 40:1 (Figure 
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2B). On the other hand, direct hyperplasia following PB-treatment revealed a general increase in 

TAGs and cholesteryl esters (CE), increased MUFA-containing PC(36:1), and a decrease in PC(38:6) 

and PC(32:0), compared to control (OPLS-DA; R2 = 0.88, Q2 = 0.87, p < 0.01; Figure 2C). The increase 

in TAGs and cholesterol during proliferation is consistent with the transcriptional pathway analysis, 

which featured net accumulation of both lipid classes and suppressed  fatty acid oxidation. However, 

the most striking observation was the significant increase in MUFA-containing PCs, that was 

consistent throughout the models of liver proliferation (Figure 2D). These results suggest that the 

increase in MUFA-containing PCs is a common event in hepatocyte proliferation, independent from 

the strategy used to switch on the proliferative program.  

Monounsaturated phosphatidylcholine accumulates in HCC tumours  

We next studied how the lipidome of HCC compares to adjacent non-tumour tissue in the DEN 

mouse models (in mice challenged with chow diet, or HFD to study hepatocellular carcinogenesis in 

the context of fatty liver). According to the lipid profiles measured using LC-MS (Supporting file 2) 

and analysed using principal components analysis (PCA), the four groups appeared to be well 

discriminated in terms of lipid composition, with samples split by diet in the first principal 

component (Figure 3A). A direct comparison of all tumour samples with non-tumour revealed that 

compared to their adjacent tissue, tumours had increased TAGs, CEs and MUFA-PC, and a decrease 

in PUFA-PC (OPLS-DA; R2 = 0.87, Q2 = 0.71, p = 0.02; Figure 3B). The levels of MUFA-PC were 

significantly increased in tumours for both DEN-exposed dietary groups at paired analysis (Figure 

3C). 

Despite accurately dissecting HCC tumours macroscopically, there still might be the risk of 

contamination of tumors with areas of normal tissue (and vice-versa). To independently confirm our 

data and overcome this potential limitation of whole-tissue lipid extractions, we used mass 

spectrometry imaging (MSI). MSI allows the spatial mapping of lipids across a tissue slice, and is 

therefore ideally suited for cancer research (12). Applying MSI to tissue sections, we confirmed a 
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striking accumulation of MUFA-PC and decrease in SM(40:1) in tumours of both chow and HFD 

models (Figure 3D). Furthermore, MSI highlighted the zonation of particular lipids across the non-

tumour adjacent tissue, as we have shown previously (26) (Figure 3E).  

As a further model of HCC, we employed a genetically-tractable mouse model of hepatocyte 

proliferation and spontaneous tumorigenesis. Concommitant activation of Ras and Myc, known 

oncogenes mutated or amplified in human HCC, resulted in rapid hepatocyte proliferation, and 

widespread formation of small and highly proliferative neoplasms. Taking advantage of the rapid and 

synchronous tumorigenesis in this model and the spatial lipid mapping potential of MSI, we 

investigated the lipidomic signature of these early cancerous lesions and of the surrounding tumor-

free tissue. Similar to the DEN-induced tumours, we found an increase in MUFA-PC, particularly 

PC(34:1), in neoplastic lesions (Figure 3F), with documentable increased proliferation (Figure S1D).  

Having established the major lipid profile changes in mouse models of proliferation and cancer, we 

sought to confirm whether these changes are also relevant in human HCC. Using a cohort of human 

HCC samples on a fatty liver background, we compared the lipid profiles in HCC compared to their 

paired non-tumour tissue (Supporting file 2, Figure S3A). This revealed an increase in MUFA-PC and 

decreased plasmalogens (HCC  vs. HCC tissue; Figure 4A). Whilst the change in plasmalogens was not 

consistently recapitulated in the animal models (Figure S3), the increased MUFA-PC was in 

agreement with all the mouse models of proliferation and cancer. MSI was used to confirm these 

changes, revealing a particularly striking accumulation of MUFA-containing PC(36:1) in HCC (Figure 

4B). These data further confirm that the increase in MUFA-containing PC is a crucial event, 

associated with the proliferative switch of hepatocytes and with hepatocellular carcinogenesis.  

Metabolic reprogramming in liver regeneration and cancer 

Next, we measured a set of core aqueous metabolites (Supporting file 3). Metabolite profiles 

measured during liver regeneration (PH and CCl4-treated) were clearly distinguishable from their 
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corresponding control profiles, whilst PB-treatment did not result in a significantly different 

metabolite profile compared to control (Figure S4A). We then went on to identify the metabolites 

responsible for differentiating liver regeneration from control groups (OPLS-DA; R2 = 0.97, Q2 = 0.87, 

p < 0.01; Figure S4B). Overall liver regeneration following PH or CCl4-injury resulted in significantly 

increased levels of many amino acids (e.g. glutamate, proline, leucine), increased metabolites 

involved in phospholipid biosynthesis (e.g CDP-choline), and nucleotide intermediates (ribose-5-

phosphate, cytidine).   

For the metabolite profiles of DEN-treated mice, we found that the samples were differentiated by 

diet on the first principal component (Figure S4C). The DEN/chow tumour samples were separated 

from non-tumour in the second principal component however the separation between tumour and 

non-tumour was poor for DEN/HFD, when looking at aqueous metabolite profiles alone (Figure S4C). 

Further study of the DEN/chow group (OPLS-DA; R2 = 0.98, Q2 = 0.90, p = 0.02; Figure S4D) suggested 

that tumours had increased amino acids (e.g. glutamate and glutamine) and citric acid cycle (TCA) 

intermediates (malate, succinate, citrate, fumarate), compared to non-tumour tissue. Tumours were 

also characterised by decreased β-hydroxybutyrate (Figure S4D) – a by-product of mitochondrial β-

oxidation, in agreement with the inhibited action of PPAR  from the transcriptomics pathway 

analysis.  

Lastly, we measured the aqueous metabolite profiles for human HCC and associated non-tumour 

tissue. We found several amino acids to be significantly increased in HCC tumours, including lysine, 

histidine and alanine; whereas aspartate was significantly reduced (Supporting file 3). Critically, 

similar to the liver regeneration studies, there was a significant increase in CDP-choline in HCC 

versus non-tumour tissue (Figure 4C).  

Overall our metabolomics results are in-line with proliferating cells undergoing metabolic rewiring to 

sustain a higher demand for macromolecular biosynthesis of amino acids, phospholipids and 

nucleotides, and increased energy production. In particular, proliferating cells have an increased 
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need for glucogenic amino acids (such as glutamine/glutamate) in order to supply nitrogen and 

carbon for biosynthesis and to produce ATP via the TCA cycle. The observed increase in amino acids 

may be driven, at least in part, by the suppression of their catabolism, as highlighted by 

transcriptional pathway analysis.  

Metabolic fluxes are directed towards increased phospholipid synthesis 

Metabolomics and lipidomics experiments demonstrated an increase in MUFA-containing PC and 

CDP-choline during liver regeneration and cancer. Using gene expression data from the same PH, 

CCl4 and DEN/HFD samples, we performed a targeted analysis of the main metabolic pathways 

involved in the generation and homeostasis of MUFA-PC (Figure 5), using differential gene 

expression patterns. Where multiple isoforms of a gene are involved in a reaction (e.g. Dgat1, 

Dgat2), we considered only those that were significantly different in at least one of the three 

models. We validated our findings in silico, by performing flux balance analysis (FBA) on a genome-

scale metabolic model (GEM) of the hepatocyte (Table S3). 

Starting with catabolic pathways, and in agreement with the pathway analysis featuring suppressed 

PPARα activity (Figure 1B), there was an overall trend across the three groups for decreased 

expression of genes and reduced metabolic flux for mitochondrial (Acads, Acadsb, Cpt2) and 

peroxisomal -oxidation (Acox1, Acox3) pathways (Figure 5A, Table S3). Activation of FFA to fatty 

acyl-CoA prior to oxidation is carried out by the long chain acyl-CoA synthetases (ACSL). Whilst 

expression for Acsl1 was consistently decreased across the groups, that of Acsl4 and Acsl5 were 

consistently increased. Though not exclusive, these three enzymes have been shown to have 

substrate preference for MUFA, PUFA and saturated fatty acids (SFA), respectively (27, 28). It is 

therefore tempting to speculate that during times of rapid proliferation, whilst -oxidation is 

reduced overall, PUFA and/or SFA are oxidised in preference to MUFA.  
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Turning to anabolic pathways (Figure 5B), we found increased gene expression and/or metabolic flux 

for lipogenic genes (e.g. Acaca, Acly), and the elongation (Elovl6) and desaturation (Scd1/2) of 

palmitic acid, FFA(16:0), to FFA(18:1), particularly in the PH and DEN/HFD models. Fatty acids can 

then be incorporated into PC via the Land’s cycle (Lpcat). Metabolic fluxes suggest that the Land’s 

cycle is working towards the synthesis of phospholipids (Table S3). 

PC is also formed de novo via the Kennedy pathway (Figure 5C). This pathway was upregulated in 

proliferation and cancer, through increased gene expression of Chka and availability of substrate 

(e.g. choline). Furthermore, breakdown of SM can also contribute phosphocholine, a substrate which 

can enter the Kennedy pathway (Figure 5C). This is supported by increased gene expression of 

Smpd3, and MSI which showed a dramatic decrease of SM(40:1) in tumours (Figure 3D). FBA 

confirmed that the Kennedy pathway is driven towards increased PC synthesis in hepatocyte 

proliferation and cancer (Table S3). 

In addition, following the imposed up/down regulations of the fluxes through -oxidation and 

lipogenesis, the whole metabolic network reacts by enhancing lipid synthesis and modulating flux 

through both glycolysis (e.g. upregulated commitment and rate-limiting steps catalysed by 

hexokinase, Hk, and phosphofructokinase, Pfk) and the TCA cycle (upregulated at the level of citrate 

synthase, Cs; downregulated at malate dehydrogenase, Mdh, and -ketoglutarate dehydrogenase, 

Ogdh, steps; Table S3), thus working as an anaplerotic pathway for de novo lipogenesis.  

MUFA lipids are correlated with genetic markers of hepatocellular carcinoma  

Having identified potential lipid metabolic pathways affected by proliferation and cancer, we next 

evaluated gene/metabolite correlations in tumour-only groups to see if their concentration 

correlated with the proliferative behaviour. Within DEN/HFD tumours, we assessed correlation of 

total MUFA-PC with related lipid metabolic genes, and with known diagnostic and prognostic 

markers of HCC. We found a strong positive correlation between total MUFA-PC and Chka, Acly, 
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Scd2, Lpl, Acsl4 gene expression and choline, CDP-choline metabolites (Figure S5). This suggests that 

the increase in MUFA-PC in tumours is closely linked to de novo lipogenesis, desaturation by Scd and 

synthesis of PC by the Kennedy pathway. On the other hand, a strong negative correlation was 

observed between MUFA-PC and Acsl1, Pemt, Dgat2 and Acad gene expression. In addition, MUFA-

PC was positively correlated to proliferation markers (Ki67, Ccne1, Ccnd1, Ccne2, Ccnd2), and HCC 

diagnostic markers (Afp, Spp1), thus suggesting the importance of these lipids for the proliferative 

status of HCC (Figure S5).  

Lastly, we performed RNA sequencing on human HCC tumours to assess whether similar correlations 

would also be found. We performed a Spearman’s rank correlation analysis for the three groups of 

PC (SFA, MUFA, PUFA) and related lipid genes, with gene expression pertaining to known markers of 

HCC and proliferation. There were several clusters identified in the correlation matrix for HCC 

tumours, whereas no clusters and few significant correlations could be calculated within the non-

tumour group (Figure 6A, Figure S6). Similar to the DEN/HFD model, we found distinct associations 

for MUFA-PC in tumours, compared to SFA- and PUFA-containing PC. Considering the lipid-related 

pathways, MUFA-PC was positively correlated with gene expression for ACLY, ACACA, ELOVL6, SCD, 

and ACSL4; and with CDP-choline metabolite levels. There was positive correlation of SFA-PC with 

LAMB1, ICAM1, TGFB1 (markers of EMT, amongst other functions), and CCND2. As previously 

described in murine samples, MUFA-PC was associated with expression of proliferation and cell cycle 

markers (CCNE2, CCNA2, CCNB2, PCNA, MYC), and several clinical diganostic and/or prognostic 

markers of HCC (e.g. AFP, SPP1) (Figure 6A, Figure 6B).   

Taken together, our data suggest that hepatocyte proliferation in HCC is linked to: i) enhanced de 

novo lipogenesis; ii) increased SCD-mediated desaturation of fatty acyl chains; iii) reduced -

oxidation; and iv) increased de novo synthesis of PC through the Kennedy pathway. This has the net 

result of increasing the MUFA pool, and MUFA-PC in particular. MUFA-PC may therefore have use as 

a marker of proliferation, and warrants further large-scale studies to assess the suitability of these 
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lipids for clinical application as diagnostic and prognostic biomarkers of HCC or, for use of MUFA-PC 

anabolic pathways as targets for treatment. 

 

DISCUSSION 

Growing evidence suggests that the modulation of cell metabolism could be a good strategy to 

ameliorate cell proliferation in cancer. It is of great importance, therefore, to unravel the complex 

metabolic adaptations arising in cancer cells, when they switch to uncontrolled proliferation. This 

may lead to identifying novel pharmacological targets and potential diagnostic or prognositc 

biomarkers. Several metabolomics studies on HCC have been performed to date (29-32). Here we 

show for the first time an integrated systems biology dataset (lipids, aqueous metabolites and RNA 

sequencing), studying the reprogramming of lipid metabolism in multiple models of liver 

regeneration, direct hepatic hyperplasia, and in murine and fatty liver-associated human HCC.  

The most striking difference amongst models of proliferation was that PB-treated mice developed a 

substantially higher hepatic TAG content than other models, as expected (33). In the murine models 

of HCC, there were distinct differences in the TAG composition, with a greater increase in short-

chain TAGs in tumours of the HFD model, compared to chow (Figure S7). This highlights diet-specific 

changes in hepatic metabolism, in the context of HCC. Importantly, we were also able to identify the 

changes in lipid metabolism occurring in proliferating hepatocytes, independently from the 

challenge that activates the proliferative program, or of the surrounding microenvironment.  

Specifically, an increase in MUFA-PC was measured by lipidomics, and confirmed by MSI in cancer, 

for all the models. We integrated data from lipidomics, metabolomics and transcriptomics to link 

these changes in lipid content to specific pathways. These included increased lipogenesis, fatty acyl 

desaturation, de novo synthesis of PC, PC remodelling and decreased -oxidation. We also show for 

the first time that levels of MUFA-PC are strongly correlated with proliferation markers, cell cycle 
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control and other known genetic markers of HCC in both mouse and human tumours. Increased 

MUFA in the lipidome may confer several advantages to highly proliferative cancer cells and has 

been described before (34-36). One such advantage would be to prevent an accumulation of 

palmitic acid from increased lipogenesis, which otherwise could trigger endoplasmic reticulum (ER) 

stress and apoptoic signalling pathways (37). Furthermore, a reduction in saturated phospholipids 

was reported to alter membrane fluidity in HCC cells, resulting in improved uptake of glucose and 

increased metastatic abilities (38). Reducing PUFA in the PC fraction could also help proliferating 

cells to ameliorate the production of pro-inflammatory eicosanoids via phospholipase action, 

thereby promoting cell survival and the priming of proliferative programs. The decreased 

plasmalogens observed in HCC, compared to non-tumour tissue, is also of interest. A subset of these 

lipids are thought to play a protective role against oxidative damage and depleted levels of 

circulating plasmalogens have been linked to HCC (decreased in serum of HCC patients compared to 

control group) and type 2 diabetes (32, 39-41).  

Targeting lipid metabolism is increasingly attracting interest as a therapeutic strategy for HCC (42). 

There is a growing body of evidence suggesting that inhibition of the desaturation and elongation of 

fatty acids offers an alternative to suppressing de novo synthesis (37, 43-45). Our study suggests that 

the change in the abundance of multiple lipid-related metabolic genes is associated with the 

development and progression of human HCC and warrant further study to evaluate their potential as 

drug targets. Since hepatic MUFA-PC was closely correlated with proliferation and other markers of 

HCC, this further has the potential to become a new prognostic marker and enable improved patient 

stratification. 

Finally, our study revealed that much of the lipid reprogramming in cancer cells was also 

recapitulated in mouse models of liver regeneration and direct hepatic hyperplasia, suggesting that 

these mechanisms are not necessarily cancer-specific but more broadly associated with hepatocyte 

proliferation. This has important implications to better understand the role of lipid metabolism in 
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the pathophysiological events linking NASH-cirrhosis to HCC but also in terms of personalised 

medicine. Given that hepatocyte proliferation is impaired in advanced phases of chronic liver 

disease, our study suggests that the choice of metabolic target for the treatment of HCC might need 

careful evaluation, particularly when associated with liver resection. Overall, our study has shed new 

light on metabolic adaptions of proliferating hepatocytes to enrich MUFA-PC, opening several new 

avenues for future research and highlighting the power of integrating data from multiple –omics 

techniques. 
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FIGURE LEGENDS 

Figure 1. Pathway enrichment analysis of the transcriptome reveals changes to metabolism of 

lipids and amino acids in proliferation and cancer. Enrichment analysis for canonical pathways (CP) 

and bio-functions (BF) was performed on differentially expressed genes for the PH (N = 5), CCl4 (N = 

3) and DEN/HFD (N = 4) models (A). Comparative analysis of predicted upstream regulators (UR) for 

PH (N = 5), CCl4 (N = 3) and DEN/HFD (N = 4) models, based on pathways significantly (p < 0.05) 

enriched and with a predicted activation/inhibition (predicted activation status: Z-score) (B). 

“Network-like” graphical representation of the interaction between upstream regulators and the 

differentially modulated pathways they control (blue: downregulated; orange: upregulated) in the 

three models (C). Full list of modulated pathways in Supporting File 1 (BF: n44; CP: n15; UR: n191). 

Figure 2. Mice undergoing hepatocyte proliferation have characteristically different hepatic lipid 

profiles to controls. Lipid profiles were measured by liquid chromatography mass spectrometry (LC-

MS), and compared using partial least squares discriminant analysis (PLS-DA) (A). Orthogonal (O)PLS-

DA models and their associated S-plots were constructed to compare liver regeneration (PH and 

CCl4) groups versus control (B), and direct hyperplasia PB-treated versus control (C). There was 

consistently an increase in monounsaturated (MUFA)-containing phosphatidylcholines (PC) in 

proliferating liver (D). Paired data are represented as spaghetti plots; non-paired data show mean ± 

SEM (*** p < 0.001, ** p < 0.01, * p < 0.05). PH experiment (before = 5, after = 5); CCl4 experiment 

(control = 3, treated = 3); PB experiment (control = 5, treated = 6).  

Figure 3. MUFA-containing PC is increased in tumours for different models of HCC. HCC was 

induced by DEN-exposure in WT mice, fed a chow or high fat diet (HFD). LC-MS based lipidomics data 

were used to perform principal components analysis (PCA) and to construct PLS-DA models, wherein 

good separation of the different groups was achieved (A). OPLS-DA was used to compare tumour-

containing groups versus non-tumour groups (B). There was an increase in MUFA-containing PC in 

tumour for DEN/HFD and DEN/chow mice (C). Paired data are shown as spagetti plots (*** p < 0.001, 
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** p < 0.01, * p < 0.05). DEN/chow: N = 4 per group; DEN/HFD: N = 6 per group. Mass spectrometry 

imaging (MSI) revealed that MUFA-containing PC is increased, and SM(40:1) is decreased, in tumours 

for three different models of HCC. Adjacent H&E stained sections are shown, alongside single ion 

intensity images (D). An overlay of three lipid distributions, highlighting the differentiation of tumour 

from adjacent, zonated tissue (representative sample from the DEN/chow group is shown) (E). The 

spatial distribution of PC(34:1) in control tamoxifen-treated liver is contrasted to that following 

oncogenic activation of MYC (F). In control, PC(34:1) follows a zonal pattern correpsonding to 

periportal areas, as reported previously; following activation of MYC, the zonation is altered with 

PC(34:1) co-localising with neoplastic lesions.  

Figure 4. Lipid and metabolite changes in human hepatocellular carcinoma. Increased MUFA-PC 

and decreased plasmalogens were found in HCC tumours, compared to non-tumour (A). MSI shows 

increased MUFA-containing PC(36:1) in human HCC, compared to adjacent non-tumour tissue (B). 

Aqueous metabolomics experiments revealed a striking increase in CDP-choline in tumours, 

compared to non-tumour (C). Paired data are shown;*** p < 0.001, ** p < 0.01, * p < 0.05); N = 7. 

Figure 5. Multi-omics reveals widespread modulation of lipid metabolism in liver proliferation and 

cancer. Gene expression and metabolic fluxes were examined for pathways involved in -oxidation 

(A), de novo lipogenesis (B) and synthesis of PC by the Kennedy pathway (C). For lipid catabolism, 

genes of interest included fatty acid activation (Acsl family), carnitine shuttle (Cpt2), mitochondrial 

(Acad family) and peroxisomal (Acox family) -oxidation, and ketogenesis (Aacs). Acetyl-coA from -

oxidation can enter the TCA cycle, which generates citrate for lipid synthesis. Fatty acids are 

synthesised by de novo lipogenesis (Acly, Acaca, Fasn), and subsequently elongated (Elovl6) and 

desaturated (Scd). They can then be esterified into complex lipids, such as phosphatidylcholine (PC) 

by the Land’s cycle (Lpcat). PC is also formed de novo by the Kennedy pathway (Chka, Pcyt1, Chpt1). 

Dietary lipids (hydrolysis of TAGs by Lpl) and sphingomyelin (breakdown by Smdp3) can also feed 

into the Kennedy pathway. Finally, phosphatidylethanolamine (PE) can be converted to PC by Pemt. 
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Predicted metabolic flux for the PH model is indicated by colour of the enzyme names (red = 

upregulated; blue = downregulated) (A). Individual gene expression log2 fold changes after PH (N = 

5), CCl4-treatment (N = 3) and in DEN/HFD (N = 4) tumours are shown in adjacent heatmaps. *** p < 

0.001, ** p < 0.01, * p < 0.05, adjusted for false discovery using Benjamin-Hochberg approach. 

Legend for heat map shown at bottom. Supporting file 4 and Table S3 have further details on the 

metabolic flux analysis.  

Figure 6. MUFA-PC is correlated with proliferation, cell cycle and markers of HCC in humans. 

Heatmap of correlation matrix (Spearman’s rank correlation coefficient, 95 % C.I., p < 0.05 adjusted 

using Benjamin-Hochberg method) for gene expression and differentially unsaturated PCs in human 

HCC tumours (N = 7). Metabolites are in yellow text; lipid-related genes in green and HCC-associated 

genes in blue. Two main clusters were identified. The first shows a positive correlation of SFA-PC to 

several genes associated with HCC. The second cluster links MUFA-PC to proliferation and further 

HCC-associated genes. In addition, MUFA-PC was positively correlated with lipid metabolic genes 

ELOVL6, SCD, ACSL4, ACACA and metabolite CDP-choline (A). Individual patient correlations for 

PCNA, CCNE2 and CCNB2 gene expression with MUFA-PC concentration, and TGFB1 with SFA-PC (B).  
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