64 research outputs found
Reserves forecasting for open market operations
Bank reserves ; Open market operations
Baryon flow at SIS energies
We calculate the baryon flow in the energy range from .25 to
in a relativistic transport model for and
collisions employing various models for the baryon self energies. We find that
to describe the flow data of the FOPI Collaboration the strength of the vector
potential has to be reduced at high relative momentum or at high density such
that the Schr\"odinger- equivalent potential at normal nuclear density
decreases above 1 GeV relative kinetic energy and approaches zero above 2 GeV.Comment: 20 pages, LATEX, 7 PostScript figure
Event Anisotropy in High Energy Nucleus-Nucleus Collisions
The predictions of event anisotropy parameters from transport model RQMD are
compared with the recent experimental measurements for 158 GeV Pb+Pb
collisions. Using the same model, we study the time evolution of event
anisotropy at 2 GeV and 158 GeV for several colliding systems. For the
first time, both momentum and configuration space information are studied using
the Fourier analysis of the azimuthal angular distribution. We find that, in
the model, the initial geometry of the collision plays a dominant role in
determining the anisotropy parameters.Comment: 18 pages, 7 figures, 2 table
Microscopic calculations of stopping and flow from 160AMeV to 160AGeV
The behavior of hadronic matter at high baryon densities is studied within
Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is
observed for Au+Au collisions from SIS up to SPS energies. The excitation
function of flow shows strong sensitivities to the underlying equation of state
(EOS), allowing for systematic studies of the EOS. Effects of a density
dependent pole of the -meson propagator on dilepton spectra are studied
for different systems and centralities at CERN energies.Comment: Proceedings of the Quark Matter '96 Conference, Heidelberg, German
Anisotropic flow in 4.2A GeV/c C+Ta collisions
Anisotropic flow of protons and negative pions in 4.2A GeV/c C+Ta collisions
is studied using the Fourier analysis of azimuthal distributions. The protons
exhibit pronounced directed flow. Directed flow of pions is positive in the
entire rapidity interval and indicates that the pions are preferentially
emitted in the reaction plane from the target to the projectile. The elliptic
flow of protons and negative pions is close to zero. Comparison with the
quark-gluon-string model (QGSM) and relativistic transport model (ART 1.0) show
that they both yield a flow signature similar to the experimental data.Comment: 4 pages, 3 figures, Accepted for publication in Phys. Rev.
The energy dependence of flow in Ni induced collisions from 400 to 1970A MeV
We study the energy dependence of collective (hydrodynamic-like) nuclear
matter flow in 400-1970 A MeV Ni+Au and 1000-1970 A MeV Ni+Cu reactions. The
flow increases with energy, reaches a maximum, and then gradually decreases at
higher energies. A way of comparing the energy dependence of flow values for
different projectile-target mass combinations is introduced, which demonstrates
a common scaling behaviour among flow values from different systems.Comment: 12 pages, 3 figures. Submitted to Physical Review Letter
Radial Flow in Au+Au Collisions at E=0.25-1.15 A GeV
A systematic study of energy spectra for light particles emitted at
midrapidity from Au+Au collisions at E=0.25-1.15 A GeV reveals a significant
non-thermal component consistent with a collective radial flow. This component
is evaluated as a function of bombarding energy and event centrality.
Comparisons to Quantum Molecular Dynamics (QMD) and Boltzmann-Uehling-Uhlenbeck
(BUU) models are made for different equations of state.Comment: 10 pages of text and 4 figures (all ps files in a uuencoded package)
Flow angle from intermediate mass fragment measurements
Directed sideward flow of light charged particles and intermediate mass
fragments was measured in different symmetric reactions at bombarding energies
from 90 to 800 AMeV. The flow parameter is found to increase with the charge of
the detected fragment up to Z = 3-4 and then turns into saturation for heavier
fragments. Guided by simple simulations of an anisotropic expanding thermal
source, we show that the value at saturation can provide a good estimate of the
flow angle, , in the participant region. It is found that
depends strongly on the impact parameter. The excitation
function of reveals striking deviations from the ideal
hydrodynamical scaling. The data exhibit a steep rise of \Theta_{\flow} to a
maximum at around 250-400 AMeV, followed by a moderate decrease as the
bombarding energy increases further.Comment: 28 pages Revtex, 6 figures (ps files), to appear in Nucl.Phys.
- âŠ