326 research outputs found

    Does wage rank affect employees' well-being?

    Get PDF
    How do workers make wage comparisons? Both an experimental study and an analysis of 16,000 British employees are reported. Satisfaction and well-being levels are shown to depend on more than simple relative pay. They depend upon the ordinal rank of an individual's wage within a comparison group. “Rank” itself thus seems to matter to human beings. Moreover, consistent with psychological theory, quits in a workplace are correlated with pay distribution skewness

    Response vs. Perception

    Full text link
    Three experiments were conducted in which college students read, and then attempted to match, a series of written descriptive passages with the referent photographs on which they were based; the photographs sho wed the face of an actor, representing a variety of emotional expressions. In Experiment I, subjects provided with a series of context passages depicting a narrow range of emotions (neither pleasant nor unpleasant) chose “matches” having more extreme pleasantness values than did subjects provided with context passages depicting a wide range of descriptions on the pleasantness dimension when responding to test descriptions embedded within the context series. In Experiments II and III, contrast effects were obtained; subjects who had read mostly unpleasant context passages chose more pleasant referents in response to neutral test descriptions than did those who had read mostly pleasant descriptions. The results of all three experiments suggested that these effects were mediated in large part by a response bias, the tendency to use each response alternative with roughly equal frequency. In Experiments II and III, there was suggestive evidence for the possibility that a more central (or perceptual) mechanism may also have contributed to the observed results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45367/1/11031_2004_Article_BF00992590.pd

    Bayesian Inference Underlies the Contraction Bias in Delayed Comparison Tasks

    Get PDF
    Delayed comparison tasks are widely used in the study of working memory and perception in psychology and neuroscience. It has long been known, however, that decisions in these tasks are biased. When the two stimuli in a delayed comparison trial are small in magnitude, subjects tend to report that the first stimulus is larger than the second stimulus. In contrast, subjects tend to report that the second stimulus is larger than the first when the stimuli are relatively large. Here we study the computational principles underlying this bias, also known as the contraction bias. We propose that the contraction bias results from a Bayesian computation in which a noisy representation of a magnitude is combined with a-priori information about the distribution of magnitudes to optimize performance. We test our hypothesis on choice behavior in a visual delayed comparison experiment by studying the effect of (i) changing the prior distribution and (ii) changing the uncertainty in the memorized stimulus. We show that choice behavior in both manipulations is consistent with the performance of an observer who uses a Bayesian inference in order to improve performance. Moreover, our results suggest that the contraction bias arises during memory retrieval/decision making and not during memory encoding. These results support the notion that the contraction bias illusion can be understood as resulting from optimality considerations

    A Simple Artificial Life Model Explains Irrational Behavior in Human Decision-Making

    Get PDF
    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats’ neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments
    corecore