828 research outputs found
Variation of turbulent burning rate of methane, methanol, and iso-octane air mixtures with equivalence ratio at elevated pressure
Turbulent burning velocities for premixed methane, methanol, and iso-octane/air mixtures have been experimentally determined for an rms turbulent velocity of 2 m/s and pressure of 0.5 MPa for a wide range of equivalence ratios. Turbulent burning velocity data were derived using high-speed schlieren photography and transient pressure recording; measurements were processed to yield a turbulent mass rate burning velocity, utr. The consistency between the values derived using the two techniques, for all fuels for both fuel-lean and fuel-rich mixtures, was good. Laminar burning measurements were made at the same pressure, temperature, and equivalence ratios as the turbulent cases and laminar burning velocities and Markstein numbers were determined. The equivalence ratio (φ) for peak turbulent burning velocity proved not always coincident with that for laminar burning velocity for the same fuel; for isooctane, the turbulent burning velocity unexpectedly remained high over the range φ = 1 to 2. The ratio of turbulent to laminar burning velocity proved remarkably high for very rich iso-octane/air and lean methane/air mixtures
Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.
BackgroundTo determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed.MethodsTen CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system.ResultsAn average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1).ConclusionThe RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis
Degradation studies of hydrophilic, partially degradable and bioactive cements (HDBCs) incorporating chemically modified starch
The degradation rate in Hydrophilic, Degradable and Bioactive Cements (HDBCs) containing starch/cellulose acetate blends (SCA) is still low. In order to increase degradation, higher amounts of starch are required to exceed the percolation threshold. In this work, gelatinization, acetylation and methacrylation of corn starch were performed and assessed as candidates to replace SCA in HDBCs. Formulations containing methacrylated starch were prepared with different molar ratios of 2-hydroxyethyl methacrylate and methyl methacrylate in the liquid component and the amount of residual monomer released into water was evaluated. The concentration of reducing sugars, percentage of weight loss and morphologic analyses after degradation all confirmed increased degradation of HDBC with alpha-amylase, with the appearance of pores and voids from enzymatic action. Methacrylated starch therefore is a better alternative to be used as the solid component of HDBC then SCA, since it leads to the formation of cements with a lower release of toxic monomers and more prone to hydrolytic degradation while keeping the other advantages of HDBCs.The authors acknowledge to Foundation for Science and Technology (FCT), who supported this study through funds from project Concept2Cement (POCTI/CTM/60735/2004)
Expansion in CD39(+) CD4(+) Immunoregulatory T Cells and Rarity of Th17 Cells in HTLV-1 Infected Patients Is Associated with Neurological Complications
HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develops HAM/TSP. CD4(+) T cells are the main target of infection and play a pivotal role in regulating immunity to HTLV and are hypothesized to participate in the pathogenesis of HAM/TSP. the CD39 ectonucleotidase receptor is expressed on CD4(+) T cells and based on co-expression with CD25, marks T cells with distinct regulatory (CD39(+)CD25(+)) and effector (CD39(+)CD25(-)) function. Here, we investigated the expression of CD39 on CD4(+) T cells from a cohort of HAM/TSP patients, HTLV-1 asymptomatic carriers (AC), and matched uninfected controls. the frequency of CD39(+)CD4(+) T cells was increased in HTLV-1 infected patients, regardless of clinical status. More importantly, the proportion of the immunostimulatory CD39(+)CD25(-) CD4+ T-cell subset was significantly elevated in HAM/TSP patients as compared to AC and phenotypically had lower levels of the immunoinhibitory receptor, PD-1. We saw no difference in the frequency of CD39(+)CD25(+) regulatory (Treg) cells between AC and HAM/TSP patients. However, these cells transition from being anergic to displaying a polyfunctional cytokine response following HTLV-1 infection. CD39(-)CD25(+) T cell subsets predominantly secreted the inflammatory cytokine IL-17. We found that HAM/TSP patients had significantly fewer numbers of IL-17 secreting CD4(+) T cells compared to uninfected controls. Taken together, we show that the expression of CD39 is upregulated on CD4(+) T cells HAM/TSP patients. This upregulation may play a role in the development of the proinflammatory milieu through pathways both distinct and separate among the different CD39 T cell subsets. CD39 upregulation may therefore serve as a surrogate diagnostic marker of progression and could potentially be a target for interventions to reduce the development of HAM/TSP.National Institute of Allergies and Infectious DiseasesNational Institutes of HealthUniversity of CaliforniaSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS ResearchFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)John E. Fogarty International CenterNational Center for Research ResourcesNational Institute of General Medical Sciences from the National Institutes of HealthUniv Calif San Francisco, Dept Med, Div Expt Med, San Francisco, CA 94143 USAUniv Hawaii, John A Burns Sch Med, Dept Trop Med, Hawaii Ctr AIDS, Honolulu, HI 96822 USAUniv São Paulo, Sch Med, Deparment Infect Dis, São Paulo, BrazilUniv São Paulo, Sch Med, Div Clin Immunol & Allergy, São Paulo, BrazilFuncacao Prosangue, Hemoctr São Paulo, Mol Biol Lab, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS Research: P30 AI027763FAPESP: 04/15856-9/KallasFAPESP: 2010/05845-0/KallasFAPESP: 11/12297-2/SanabaniJohn E. Fogarty International Center: D43 TW00003National Center for Research Resources: 5P20RR016467-11National Institute of General Medical Sciences from the National Institutes of Health: 8P20GM103466-11Web of Scienc
A single whole-body low dose X-irradiation does not affect L1, B1 and IAP repeat element DNA methylation longitudinally
The low dose radioadaptive response has been shown to be protective against high doses of radiation as well as aging-induced genomic instability. We hypothesised that a single whole-body exposure of low dose radiation would induce a radioadaptive response thereby reducing or abrogating aging-related changes in repeat element DNA methylation in mice. Following sham or 10 mGy X-irradiation, serial peripheral blood sampling was performed and differences in Long Interspersed Nucleic Element 1 (L1), B1 and Intracisternal-A-Particle (IAP) repeat element methylation between samples were assessed using high resolution melt analysis of PCR amplicons. By 420 days post-irradiation, neither radiation- or aging-related changes in the methylation of peripheral blood, spleen or liver L1, B1 and IAP elements were observed. Analysis of the spleen and liver tissues of cohorts of untreated aging mice showed that the 17-19 month age group exhibited higher repeat element methylation than younger or older mice, with no overall decline in methylation detected with age. This is the first temporal analysis of the effect of low dose radiation on repeat element methylation in mouse peripheral blood and the first to examine the long term effect of this dose on repeat element methylation in a radiosensitive tissue (spleen) and a tissue fundamental to the aging process (liver). Our data indicate that the methylation of murine DNA repeat elements can fluctuate with age, but unlike human studies, do not demonstrate an overall aging-related decline. Furthermore, our results indicate that a low dose of ionising radiation does not induce detectable changes to murine repeat element DNA methylation in the tissues and at the time-points examined in this study. This radiation dose is relevant to human diagnostic radiation exposures and suggests that a dose of 10 mGy X-rays, unlike high dose radiation, does not cause significant short or long term changes to repeat element or global DNA methylation.Michelle R. Newman, Pamela J. Sykes, Benjamin J. Blyth, Eva Bezak, Mark D. Lawrence, Katherine L. Morel, Rebecca J. Ormsb
Discovery of novel herpes simplexviruses in wild gorillas, bonobos, and chimpanzees supports zoonotic origin of HSV-2
Viruses closely related to human pathogens can reveal the origins of human infectious diseases. Human herpes simplexvirus type 1 (HSV-1) and type 2 (HSV-2) are hypothesized to have arisen via host-virus codivergence and cross-species transmission. We report the discovery of novel herpes simplexviruses during a large-scale screening of fecal samples from wild gorillas, bonobos, and chimpanzees. Phylogenetic analysis indicates that, contrary to expectation, simplexviruses from these African apes are all more closely related to HSV-2 than to HSV-1. Molecular clock-based hypothesis testing suggests the divergence between HSV-1 and the African great ape simplexviruses likely represents a codivergence event between humans and gorillas. The simplexviruses infecting African great apes subsequently experienced multiple cross-species transmission events over the past 3 My, the most recent of which occurred between humans and bonobos around 1 Ma. These findings revise our understanding of the origins of human herpes simplexviruses and suggest that HSV-2 is one of the earliest zoonotic pathogens
Chimpanzees (Pan troglodytes) indicate mammalian abundance across broad spatial scales
Ongoing ecosystem change and biodiversity decline across the Afrotropics call for tools to monitor the state of biodiversity or ecosystem elements across extensive spatial and temporal scales. We assessed relationships in the co-occurrence patterns between great apes and other medium to large-bodied mammals to evaluate whether ape abundance serves as a proxy for mammal diversity across broad spatial scales. We used camera trap footage recorded at 22 research sites, each known to harbor a population of chimpanzees, and some additionally a population of gorillas, across 12 sub-Saharan African countries. From ~350,000 1-min camera trap videos recorded between 2010 and 2016, we estimated mammalian community metrics, including species richness, Shannon diversity, and mean animal mass. We then fitted Bayesian Regression Models to assess potential relationships between ape detection rates (as proxy for ape abundance) and these metrics. We included site-level protection status, human footprint, and precipitation variance as control variables. We found that relationships between detection rates of great apes and other mammal species, as well as animal mass were largely positive. In contrast, relationships between ape detection rate and mammal species richness were less clear and differed according to site protection and human impact context. We found no clear association between ape detection rate and mammal diversity. Our findings suggest that chimpanzees hold potential as indicators of specific elements of mammalian communities, especially population-level and composition-related characteristics. Declines in chimpanzee populations may indicate associated declines of sympatric medium to large-bodied mammal species and highlight the need for improved conservation interventions.Changes in chimpanzee abundance likely precede extirpation of sympatric mammals
Complex variation in Afrotropical mammal communities with human impact
The diversity and composition of mammal communities are strongly influenced by human activities, though these relationships may vary across broad scales. Understanding this variation is key to conservation, as it provides a baseline for planning and evaluating management interventions. We assessed variation in the structure and composition of Afrotropical medium and large mammal communities within and outside protected areas, and under varying human impact. We collected data at 512 locations from 22 study sites in 12 Afrotropical countries over 7 years and 3 months (2011–2018) with 164,474 camera trap days in total. Half of these sites are located inside protected areas and half in unprotected areas. The sites are comparable in that they all harbor at least one great ape species, indicating a minimum level of habitat similarity, though they experience varying degrees of human impact. We applied Bayesian Regression models to relate site protection status and the degree of human impact to mammal communities. Protected area status was positively associated with the proportion of all threatened species, independent of the degree of human impact. Similarly, species richness was associated with area protection but was more sensitive to human impact. For all other attributes of the mammal communities, the pattern was more complex. The influence of human impact partially overrides the positive effects of protected area status, resulting in comparable mammal communities being observed both within protected areas and in similarly remote locations outside these areas. We observed a common pattern for large carnivores, whose probability of occurrence declined significantly with increasing human impact, independent of site protection status. Mammal communities benefit from sustainability measures of socio-economic context that minimize human impact. Our results support the notion that conservation of mammalian species can be achieved by reducing human impact through targeted conservation measures, adopting landscape-level management strategies, fostering community engagement, and safeguarding remote habitats with high mammal diversity
Population dynamics and genetic connectivity in recent chimpanzee history
Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees
‘I know this whole market is based on the trust you put in me and I don’t take that lightly’: Trust, community and discourse in crypto-drug markets
- …
