124 research outputs found

    Head-on collisions of boson stars

    Full text link
    We study head-on collisions of boson stars in three dimensions. We consider evolutions of two boson stars which may differ in their phase or have opposite frequencies but are otherwise identical. Our studies show that these phase differences result in different late time behavior and gravitational wave output

    Analysis of the drainage density of experimental and modelled tidal networks

    Get PDF
    Abstract. Based on controlled laboratory experiments, we numerically simulate the initiation and long-term evolution of back-barrier tidal networks in micro-tidal and meso-tidal conditions. The simulated pattern formation is comparable to the morphological growth observed in the laboratory, which is characterised by relatively rapid initiation and slower adjustment towards an equilibrium state. The simulated velocity field is in agreement with natural reference systems such as the micro-tidal Venice Lagoon and the meso-tidal Wadden Sea. Special attention is given to the concept of drainage density, which is measured on the basis of the exceedance probability distribution of the unchannelled flow lengths. Model results indicate that the exceedance probability distribution is characterised by an approximately exponential trend, similar to the results of laboratory experiments and observations in natural systems. The drainage density increases greatly during the initial phase of tidal network development, while it slows down when the system approaches equilibrium. Due to the larger tidal prism, the tidal basin has a larger drainage density for the meso-tidal condition (after the same amount of time) than the micro-tidal case. In both micro-tidal and meso-tidal simulations, it is found that there is an initial rapid increase of the tidal prism which soon reaches a relatively steady value (after approximately 40 yr), while the drainage density adjusts more slowly. In agreement with the laboratory experiments, the initial bottom perturbations play an important role in determining the morphological development and hence the exceedance probability distribution of the unchannelled flow lengths. Overall, our study indicates an agreement of the geometric characteristics between the numerical and experimental tidal networks

    Tsunami Resonance in Palma Bay and Harbor, Majorca Island, as induced by the 2003 Western Mediterranean Earthquake

    Get PDF
    ABSTRACT: he tsunami induced by the May 21, 2003, Algerian Boumerde`s-Zemmouri earthquake (moment magnitude Mw=6.9) propagated across the western Mediterranean Basin, thereby causing material damages in some harbors and coastal areas. This was the case in the Balearic Islands and particularly the Palma harbor. Attempts to simulate the 2003 tsunami event found discrepancies between tsunami arrival times and wave amplitude when comparing tide gauge records with results from numerical models. To date, all published model results of the amplitude of the tsunami are underestimations, attributed to numerical limitations due to the lack of high-resolution bathymetry and poor definition of harbor geometry. Other views suggest the nappropriateness of the available seismic source parameterizations and the possible occurrence of submarine landsliding triggered by the earthquake that has not been included in the numerical simulations. In this article we present the results of a numerical study aimed at better understanding the response of the interacting Palma bay and harbor under the impact of the 2003 western Mediterranean tsunami. The transference of the tsunami energy from the generation area to the continental shelf, the bay, and the harbor has been studied and compared with the natural oscillation modes of the bay and harbor water bodies. Our work includes a sensitivity analysis of the source parameterization and the bathymetry grid size for the bay and harbor as a way to explain the discrepancies between simulations and observations. The Palma harbor tide gauge shows that energy from the tsunami concentrated mainly in periods that fitted to the natural modes of oscillations of the bay. Therefore, the significant wave amplification observed inside the harbor, mainly in its northern basin, was generated by a resonance effect induced by Palma bay. The improvement of the bathymetry grid resolution in the bay and harbor domains and the inclusion in the simulations of the exact harbor geometry and internal configuration result in a slight wave-high increment that is much below the wave height recorded in the tide gauge. Our results strongly point to a necessary revision of the tsunami seismic source parameters

    Automated location of orofacial landmarks to characterize airway morphology in anaesthesia via deep convolutional neural networks

    Get PDF
    Background:A reliable anticipation of a difficult airway may notably enhance safety during anaesthesia. In current practice, clinicians use bedside screenings by manual measurements of patients’ morphology. Objective:To develop and evaluate algorithms for the automated extraction of orofacial landmarks, which characterize airway morphology. Methods:We defined 27 frontal + 13 lateral landmarks. We collected n=317 pairs of pre-surgery photos from patients undergoing general anaesthesia (140 females, 177 males). As ground truth reference for supervised learning, landmarks were independently annotated by two anaesthesiologists. We trained two ad-hoc deep convolutional neural network architectures based on InceptionResNetV2 (IRNet) and MobileNetV2 (MNet), to predict simultaneously: (a) whether each landmark is visible or not (occluded, out of frame), (b) its 2D-coordinates (x, y). We implemented successive stages of transfer learning, combined with data augmentation. We added custom top layers on top of these networks, whose weights were fully tuned for our application. Performance in landmark extraction was evaluated by 10-fold cross-validation (CV) and compared against 5 state-of-the-art deformable models. Results:With annotators’ consensus as the ‘gold standard’, our IRNet-based network performed comparably to humans in the frontal view: median CV loss L=1.277·10-3, inter-quartile range (IQR) [1.001, 1.660]; versus median 1.360, IQR [1.172, 1.651], and median 1.352, IQR [1.172, 1.619], for each annotator against consensus, respectively. MNet yielded slightly worse results: median 1.471, IQR [1.139, 1.982]. In the lateral view, both networks attained performances statistically poorer than humans: median CV loss L=2.141·10-3, IQR [1.676, 2.915], and median 2.611, IQR [1.898, 3.535], respectively; versus median 1.507, IQR [1.188, 1.988], and median 1.442, IQR [1.147, 2.010] for both annotators. However, standardized effect sizes in CV loss were small: 0.0322 and 0.0235 (non-significant) for IRNet, 0.1431 and 0.1518 (p<0.05) for MNet; therefore quantitatively similar to humans. The best performing state-of-the-art model (a deformable regularized Supervised Descent Method, SDM) behaved comparably to our DCNNs in the frontal scenario, but notoriously worse in the lateral view. Conclusions:We successfully trained two DCNN models for the recognition of 27 + 13 orofacial landmarks pertaining to the airway. Using transfer learning and data augmentation, they were able to generalize without overfitting, reaching expert-like performances in CV. Our IRNet-based methodology achieved a satisfactory identification and location of landmarks: particularly in the frontal view, at the level of anaesthesiologists. In the lateral view, its performance decayed, although with a non-significant effect size. Independent authors had also reported lower lateral performances; as certain landmarks may not be clear salient points, even for a trained human eye.BERC.2022-2025 BCAM Severo Ochoa accreditation CEX2021-001142-S / MICIN / AEI / 10.13039/50110001103

    Moldes mentales y su relación con el rendimiento en un curso en línea

    Get PDF
    En el presente trabajo se plantea el factor predictivo que tienen los moldes mentales en el rendimiento de un curso on line, así como los moldes mentales característicos de las personas que tienen mejor rendimiento frente a las que rinden menos en este tipo de cursos. La muestra es de 217 estudiantes de diversas licenciaturas y universidades del Estado Español. Se ha realizado un diseño correlacional entre los moldes mentales y el rendimiento en un curso de teleformación. Los resultados señalan que, al igual que en las situaciones presenciales, los moldes mentales explican importantes diferencias en el rendimiento del alumnado de teleformación. El alumnado de mayor rendimiento se caracteriza por poseer más autoconfianza, motivación de logro, capacidad para optimizar y rentabilizar las situaciones, poseer mayor disposición reflexiva y menor suspicacia u hostilidad frente a los demás. Por tanto, tal como ha sucedido en investigaciones previas, consideramos que los moldes mentales pueden tomarse en cuenta en los proyectos de mejora educativa tanto presencial como on line

    Group-level progressive alterations in brain connectivity patterns revealed by diffusion-tensor brain networks across severity stages in Alzheimer's disease

    Get PDF
    Alzheimer’s disease (AD) is a chronically progressive neurodegenerative disease highly correlated to aging. Whether AD originates by targeting a localized brain area and propagates to the rest of the brain across disease-severity progression is a question with an unknown answer. Here, we aim to provide an answer to this question at the group-level by looking at differences in diffusion-tensor brain networks. In particular, making use of data from Alzheimer’s Disease Neuroimaging Initiative (ADNI), four different groups were defined (all of them matched by age, sex and education level): G1 (N1 = 36, healthy control subjects, Control), G2 (N2 = 36, early mild cognitive impairment, EMCI), G3 (N3 = 36, late mild cognitive impairment, LMCI) and G4 (N4 = 36, AD). Diffusion-tensor brain networks were compared across three disease stages: stage I (Control vs. EMCI), stage II (Control vs. LMCI) and stage III (Control vs. AD). The group comparison was performed using the multivariate distance matrix regression analysis, a technique that was born in genomics and was recently proposed to handle brain functional networks, but here applied to diffusion-tensor data. The results were threefold: First, no significant differences were found in stage I. Second, significant differences were found in stage II in the connectivity pattern of a subnetwork strongly associated to memory function (including part of the hippocampus, amygdala, entorhinal cortex, fusiform gyrus, inferior and middle temporal gyrus, parahippocampal gyrus and temporal pole). Third, a widespread disconnection across the entire AD brain was found in stage III, affecting more strongly the same memory subnetwork appearing in stage II, plus the other new subnetworks, including the default mode network, medial visual network, frontoparietal regions and striatum. Our results are consistent with a scenario where progressive alterations of connectivity arise as the disease severity increases and provide the brain areas possibly involved in such a degenerative process. Further studies applying the same strategy to longitudinal data are needed to fully confirm this scenario

    Modeling the morphodynamics of coastal responses to extreme events: what shape are we in?

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892

    Numerical Approaches to Spacetime Singularities

    Get PDF
    This Living Review updates a previous version which its itself an update of a review article. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.Comment: 51 pages, 6 figures may be found in online version: Living Rev. Relativity 2002-1 at www.livingreviews.or

    Early Predictors of Employment Status One Year Post Injury in Individuals with Traumatic Brain Injury in Europe

    Get PDF
    Sustaining a traumatic brain injury (TBI) often affects the individual's ability to work, reducing employment rates post-injury across all severities of TBI. The objective of this multi-country study was to assess the most relevant early predictors of employment status in individuals after TBI at one-year post-injury in European countries. Using a prospective longitudinal non-randomized observational cohort (The Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) project), data was collected between December 2014-2019 from 63 trauma centers in 18 European countries. The 1015 individuals who took part in this study were potential labor market participants, admitted to a hospital and enrolled within 24 h of injury with a clinical TBI diagnosis and indication for a computed tomography (CT) scan, and followed up at one year. Results from a binomial logistic regression showed that older age, status of part-time employment or unemployment at time of injury, premorbid psychiatric problems, and higher injury severity (as measured with higher Injury severity score (ISS), lower Glasgow Coma Scale (GCS), and longer length of stay (LOS) in hospital) were associated with higher unemployment probability at one-year after injury. The study strengthens evidence for age, employment at time of injury, premorbid psychiatric problems, ISS, GCS, and LOS as important predictors for employment status one-year post-TBI across Europe

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org
    • …
    corecore