2,696 research outputs found

    Criticality and phase separation in a two-dimensional binary colloidal fluid induced by the solvent critical behavior

    Get PDF
    We present an experimental and theoretical study of the phase behavior of a binary mixture of colloids with opposite adsorption preferences in a critical solvent. As a result of the attractive and repulsive critical Casimir forces, the critical fluctuations of the solvent lead to a further critical point in the colloidal system, i.e. to a critical colloidal-liquid--colloidal-liquid demixing phase transition which is controlled by the solvent temperature. Our experimental findings are in good agreement with calculations based on a simple approximation for the free energy of the system.Comment: 5 pages, 5 figures, to be published in Europhysics Letter

    The MAGIC of CINEMA: First in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Get PDF
    We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20–60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform

    Dynamical density functional theory for dense atomic liquids

    Get PDF
    Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids.Comment: 14 pages, accepted for publication in J. Phys.: Condens. Matte

    How a realistic magnetosphere alters the polarizations of surface, fast magnetosonic, and Alfvén waves

    Get PDF
    Funding: MOA holds a UKRI (STFC / EPSRC) Stephen Hawking Fellowship EP/T01735X/1. DJS was supported by STFC grant ST/S000364/1. MDH was supported by NASA grant 80NSSC19K0127. A.N.W. was partially funded by STFC grant ST/N000609/1.System-scale magnetohydrodynamic (MHD) waves within Earth?s magnetosphere are often understood theoretically using box models. While these have been highly instructive in understanding many fundamental features of the various wave modes present, they neglect the complexities of geospace such as the inhomogeneities and curvilinear geometries present. Here we show global MHD simulations of resonant waves impulsively-excited by a solar wind pressure pulse. Although many aspects of the surface, fast magnetosonic (cavity/waveguide), and Alfvén modes present agree with the box and axially symmetric dipole models, we find some predictions for large-scale waves are significantly altered in a realistic magnetosphere. The radial ordering of fast mode turning points and Alfvén resonant locations may be reversed even with monotonic wave speeds. Additional nodes along field lines that are not present in the displacement/velocity occur in both the perpendicular and compressional components of the magnetic field. Close to the magnetopause the perpendicular oscillations of the magnetic field have the opposite handedness to the velocity. Finally, widely-used detection techniques for standing waves, both across and along the field, can fail to identify their presence. We explain how all these features arise from the MHD equations when accounting for a non-uniform background field and propose modified methods which might be applied to spacecraft observations.Publisher PDFPeer reviewe

    The global structure and time evolution of dayside magnetopause surface eigenmodes

    Full text link
    Theoretical work and recent observations suggest that the dayside magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern and southern ionospheres. These magnetopause surface eigenmodes (MSEs) are a potential source of magnetospheric ultralow‐frequency (ULF) waves with frequencies less than 2 mHz. Here we use the Space Weather Modeling Framework to study the magnetospheric response to impulsive solar wind dynamic pressure increases. Waves with 1.8 mHz frequency are excited whose global properties are largely consistent with theoretical predictions for MSE and cannot be explained by other known ULF wave modes. These simulation results lead to two key findings: (1) MSE can be sustained in realistic magnetic field geometries with nonzero flow shear and finite current layer thickness at the magnetopause and (2) MSE can seed the growth of tailward propagating surface waves via the Kelvin‐Helmholtz instability.Key PointsDayside ULF response to pulse consistent with magnetopause surface eigenmodeMagnetopause surface eigenmodes are a potential source of ULF waves below 2 mHzMagnetopause surface eigenmodes seed tailward propagating surface wave growthPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111803/1/grl52799.pd

    Going beyond the one-off: How can STEM engagement programmes with young people have real lasting impact?

    Get PDF
    A major focus in the science, technology, engineering and mathematics (STEM) public engagement sector concerns engaging with young people, typically through schools. The aims of these interventions are often to positively affect students’ aspirations towards continuing STEM education and ultimately into STEM-related careers. Most school engagement activities take the form of short one-off interventions that, while able to achieve positive outcomes, are limited in the extent to which they can have lasting impacts on aspirations. In this paper, we discuss various different emerging programmes of repeated interventions with young people, assessing what impacts can realistically be expected. Short series of interventions appear also to suffer some limitations in the types of impacts achievable. However, deeper programmes that interact with both young people and those who influence them over significant periods of time (months to years) seem to be more effective in influencing aspirations. We discuss how developing a theory of change and considering young people’s wider learning ecologies are required in enabling lasting impacts in a range of areas. Finally, we raise several sector-wide challenges to implementing and evaluating these emerging approaches

    In Situ Observations of a Magnetosheath High-Speed Jet Triggering Magnetopause Reconnection

    Get PDF
    Magnetosheath high‐speed jets—localized dynamic pressure enhancements typically of ∼1 Earth radius in size—impact the dayside magnetopause several times per hour. Here we present the first in situ measurements suggesting that such an impact triggered magnetopause reconnection. We use observations from the five Time History of Events and Macroscale Interactions during Substorms spacecraft in a string‐of‐pearls configuration on 7 August 2007. The spacecraft recorded magnetopause in‐and‐out motion during an impact of a magnetosheath jet (VN∼−300 km/s along the magnetopause normal direction). There was no evidence for reconnection for the preimpact crossing, yet three probes observed reconnection after the impact. We infer that the jet impact compressed the originally thick (60–70 di), high magnetic shear (140–160° magnetopause until it was thin enough for reconnection to occur. Magnetosheath high‐speed jets could therefore act as a driver for bursty dayside reconnection

    Understanding Sow Sexual Behavior and the Application of the Boar Pheromone to Stimulate Sow Reproduction

    Get PDF
    In this chapter, we review the sexual behavior of domestic pigs, and the visible or measurable anatomical features of the pig that will contribute to detecting sows in estrus. We also summarize olfactory organs, and the effects of a sexual pheromone on pig’s biology and sow reproductive performance. We discuss the role of a live boar in the heat detection where the female is in breeding crates. However, there is an increasing interest in being able to breed sows without a boar present. Farm workers must be trained on the fine points of estrus detection so that they can work in a safe and productive setting. After a review of olfactory biology of the pig, the chapter explains how new pheromonal technology, such as BOARBETTER®, aids in the process of heat detection with or without a live boar. To achieve reproductive success, the persons breeding must assimilate all fine points of pig sexual behavior and possess a clear understanding of what they should be looking for in each sow they expect to breed

    Industrial work placement in higher education: a study of civil engineering student engagement

    Get PDF
    For civil engineering undergraduates, the opportunity to spend a period of time in formal industrial work placement provides an invaluable learning experience. This paper reviews student engagement with short-term industrial placement and provides analysis of questionnaires (n=174) returned by undergraduates studying civil engineering at four Higher Education Institutes (HEI’s) in the West of Scotland. The data captures industrial placement statistics, employability skill-sets and presents brief testimonies from students. Whilst the journey to becoming a professional civil engineer is undoubtedly enhanced by short-term placement clear opportunities exist for HEI’s to affect and change existing pedagogical discourse. Commentary is likely to resonate beyond civil engineering and serve as a timely reminder of the need to re-invigorate academia / industry curriculum partnerships
    corecore